OFFSET
1,9
COMMENTS
Also the number of non-isomorphic set multipartitions (multisets of sets) of weight n with k parts and k vertices. - Gus Wiseman, Nov 14 2018
EXAMPLE
[1], [0,1], [0,1,1], [0,1,2,1], [0,0,5,2,1], [0,0,4,11,2,1], ...;
There are 8 square binary matrices with 5 ones, with no zero rows or columns, up to row and column permutation: 5 of size 3 X 3:
[0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1]
[0 0 1] [0 1 0] [0 1 1] [0 1 1] [1 1 0]
[1 1 1] [1 1 1] [1 0 1] [1 1 0] [1 1 0]
2 of size 4 X 4:
[0 0 0 1] [0 0 0 1]
[0 0 0 1] [0 0 1 0]
[0 0 1 0] [0 1 0 0]
[1 1 0 0] [1 0 0 1]
and 1 of size 5 X 5:
[0 0 0 0 1]
[0 0 0 1 0]
[0 0 1 0 0]
[0 1 0 0 0]
[1 0 0 0 0].
From Gus Wiseman, Nov 14 2018: (Start)
Triangle begins:
1
0 1
0 1 1
0 1 2 1
0 0 5 2 1
0 0 4 11 2 1
0 0 3 21 14 2 1
0 0 1 34 49 15 2 1
0 0 1 33 131 69 15 2 1
0 0 0 33 248 288 79 15 2 1
Non-isomorphic representatives of the multiset partitions counted in row 6 {0,0,4,11,2,1} are:
{{12}{13}{23}} {{1}{1}{1}{234}} {{1}{2}{3}{3}{45}} {{1}{2}{3}{4}{5}{6}}
{{1}{23}{123}} {{1}{1}{24}{34}} {{1}{2}{3}{5}{45}}
{{13}{23}{23}} {{1}{1}{4}{234}}
{{3}{23}{123}} {{1}{2}{34}{34}}
{{1}{3}{24}{34}}
{{1}{3}{4}{234}}
{{1}{4}{24}{34}}
{{1}{4}{4}{234}}
{{2}{4}{12}{34}}
{{3}{4}{12}{34}}
{{4}{4}{12}{34}}
(End)
MATHEMATICA
permcount[v_List] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
c[p_List, q_List, k_] := SeriesCoefficient[Product[Product[(1 + O[x]^(k + 1) + x^LCM[p[[i]], q[[j]]])^GCD[p[[i]], q[[j]]], {j, 1, Length[q]}], {i, 1, Length[p]}], {x, 0, k}];
M[m_, n_, k_] := M[m, n, k] = Module[{s = 0}, Do[Do[s += permcount[p]* permcount[q]*c[p, q, k], {q, IntegerPartitions[n]}], {p, IntegerPartitions[m]}]; s/(m!*n!)];
T[n_, k_] := M[k, k, n] - 2*M[k, k - 1, n] + M[k - 1, k - 1, n];
Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 10 2019, after Andrew Howroyd *)
PROG
(PARI) \\ See A321609 for M.
T(n, k) = M(k, k, n) - 2*M(k, k-1, n) + M(k-1, k-1, n); \\ Andrew Howroyd, Nov 14 2018
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Vladeta Jovovic, Aug 14 2000
EXTENSIONS
Duplicate seventh row removed by Gus Wiseman, Nov 14 2018
STATUS
approved