proposed
approved
proposed
approved
editing
proposed
H. Cheballah, S. Giraudo, R. Maurice, <a href="http://arxiv.org/abs/1306.6605">Combinatorial Hopf algebra structure on packed square matrices</a>, arXiv preprint arXiv:1306.6605, [math.CO], 2013-2015.
M. Maia and M. Mendez, <a href="httphttps://arXivarxiv.org/abs/math.CO/0503436">On the arithmetic product of combinatorial species</a>, arXiv:math/0503436 [math.CO], 2005.
proposed
editing
editing
proposed
From Gus Wiseman, Nov 14 2018: (Start)
The a(3) = 10 matrices:
[1 1] [1 1] [1 0] [0 1]
[1 0] [0 1] [1 1] [1 1]
.
[1 0 0] [1 0 0] [0 1 0] [0 1 0] [0 0 1] [0 0 1]
[0 1 0] [0 0 1] [1 0 0] [0 0 1] [1 0 0] [0 1 0]
[0 0 1] [0 1 0] [0 0 1] [1 0 0] [0 1 0] [1 0 0]
(End)
Table[Length[Select[Subsets[Tuples[Range[n], 2], {n}], Union[First/@#]==Union[Last/@#]==Range[Max@@First/@#]&]], {n, 5}] (* Gus Wiseman, Nov 14 2018 *)
approved
editing
editing
approved
G.f.: Sum_{n>=0} ((1+x)^n - 1)^n / (1+x)^(n*(n+1)). - Paul D. Hanna, Mar 26 2018
approved
editing
editing
approved
G.f.: ((1+x)^n - 1)^n / (1+x)^(n*(n+1)). - Paul D. Hanna, Mar 26 2018
approved
editing
editing
approved