[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a080263 -id:a080263
     Sort: relevance | references | number | modified | created      Format: long | short | data
A014486-index of the stunted binomial-mod-2 zigzag trees. See A080263.
+20
8
1, 6, 51, 6051, 76746, 12926010, 2372452685, 93393905915739, 1351877861804543, 286738012677424022, 62026524057807548707, 3041407633778252699836049, 686215566631222460001238168, 35912919120400408619708285058798
OFFSET
0,2
FORMULA
a(n) = A080300(A080263(n))
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 02 2003
STATUS
approved
Breadth-first-wise A014486-like encoding of the stunted binomial-mod-2 zigzag trees (A080263).
+20
4
2, 56, 968, 249728, 3996680, 1023152000, 261926931584, 17165643396644864, 274650294346579976, 70310475352724475776, 17999481690297465818240, 1179614032055334719872532480, 301981192206165688287372558464
OFFSET
0,1
FORMULA
a(n) = A014486(A080270(n))
CROSSREFS
Same sequence in decimal: A080269.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 02 2003
STATUS
approved
Orbit size of each tree A080263(n) under Donaghey's "Map M" Catalan automorphism.
+20
3
1, 3, 3, 27, 54, 54, 18, 1134, 1134, 1134, 1134, 1782, 1782, 594, 594, 30618, 30618, 30618, 30618, 78246, 78246, 78246, 78246, 165726, 165726
OFFSET
0,2
COMMENTS
This is the size of the cycle containing A080265(n) in the permutations A057505/A057506.
FORMULA
a(n) = A080967(A080265(n)).
CROSSREFS
A080977(n) = a(2*n)/A080292(n).
KEYWORD
nonn,more
AUTHOR
Antti Karttunen, Mar 02 2003
STATUS
approved
Orbit size of each tree A080263(n) under Meeussen's bf<->df map on binary trees.
+20
3
1, 3, 16, 1441, 41888, 3376173
OFFSET
0,2
COMMENTS
This is the size of the cycle containing A080265(n) in the permutations A057117/A057118.
FORMULA
a(n) = A080311(A080265(n)).
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Antti Karttunen, Mar 02 2003
STATUS
approved
A063171-encoding of the stunted binomial-mod-2 zigzag trees. See A080263.
+20
2
10, 110010, 1110001010, 111100100010110010, 1111100010001011001010, 111111001000100010110010110010, 11111110001010001000101100101110001010, 111111110010001011001000100010110010111100100010110010
OFFSET
0,1
FORMULA
a(n) = A007088(A080263(n)).
CROSSREFS
Breadth-first-wise encodings of the same trees: A080269.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 02 2003
STATUS
approved
a(n) = A080301(A080263(n)).
+20
0
0, 2, 28, 3995, 53032, 9218158, 1716408828, 68406706423034, 993609159645474, 211483814340246174, 45849905806140642231, 2254554272777258549734599, 509234594705250632023415288, 26692711238971831653512953923634
OFFSET
0,2
CROSSREFS
Cf. A080265.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 02 2003
STATUS
approved
Total number of odd entries in first n rows of Pascal's triangle: a(0) = 0, a(1) = 1, a(2k) = 3*a(k), a(2k+1) = 2*a(k) + a(k+1). a(n) = Sum_{i=0..n-1} 2^wt(i).
(Formerly M2445)
+10
64
0, 1, 3, 5, 9, 11, 15, 19, 27, 29, 33, 37, 45, 49, 57, 65, 81, 83, 87, 91, 99, 103, 111, 119, 135, 139, 147, 155, 171, 179, 195, 211, 243, 245, 249, 253, 261, 265, 273, 281, 297, 301, 309, 317, 333, 341, 357, 373, 405, 409, 417, 425, 441, 449, 465, 481, 513, 521
OFFSET
0,3
COMMENTS
The graph has a blancmange or Takagi appearance. For the asymptotics, see the references by Flajolet with "Mellin" in the title. - N. J. A. Sloane, Mar 11 2021
The following alternative construction of this sequence is due to Thomas Nordhaus, Oct 31 2000: For each n >= 0 let f_n be the piecewise linear function given by the points (k /(2^n), a(k) / 3^n), k = 0, 1, ..., 2^n. f_n is a monotonic map from the interval [0,1] into itself, f_n(0) = 0, f_n(1) = 1. This sequence of functions converges uniformly. But the limiting function is not differentiable on a dense subset of this interval.
I submitted a problem to the Amer. Math. Monthly about an infinite family of non-convex sequences that solve a recurrence that involves minimization: a(1) = 1; a(n) = max { ua(k) + a(n-k) | 1 <= k <= n/2 }, for n > 1; here u is any real-valued constant >= 1. The case u=2 gives the present sequence. Cf. A130665 - A130667. - Don Knuth, Jun 18 2007
a(n) = sum of (n-1)-th row terms of triangle A166556. - Gary W. Adamson, Oct 17 2009
From Gary W. Adamson, Dec 06 2009: (Start)
Let M = an infinite lower triangular matrix with (1, 3, 2, 0, 0, 0, ...) in every column shifted down twice:
1;
3;
2; 1;
0, 3;
0, 2, 1;
0, 0, 3;
0, 0, 2, 1;
0, 0, 0, 3;
0, 0, 0, 2, 1;
...
This sequence starting with "1" = lim_{n->infinity} M^n, the left-shifted vector considered as a sequence. (End)
a(n) is also the sum of all entries in rows 0 to n of Sierpiński's triangle A047999. - Reinhard Zumkeller, Apr 09 2012
The production matrix of Dec 06 2009 is equivalent to the following: Let p(x) = (1 + 3x + 2x^2). The sequence = P(x) * p(x^2) * p(x^4) * p(x^8) * .... The sequence divided by its aerated variant = (1, 3, 2, 0, 0, 0, ...). - Gary W. Adamson, Aug 26 2016
Also the total number of ON cells, rows 1 through n, for cellular automaton Rule 90 (Cf. A001316, A038183, also Mathworld Link). - Bradley Klee, Dec 22 2018
REFERENCES
S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 2.16.
Flajolet, Philippe, and Mordecai Golin. "Mellin transforms and asymptotics." Acta Informatica 31.7 (1994): 673-696.
Flajolet, Philippe, Mireille Régnier, and Robert Sedgewick. "Some uses of the Mellin integral transform in the analysis of algorithms." in Combinatorial algorithms on words. Springer, 1985. 241-254.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 0..16383 (first 1000 terms from T. D. Noe)
L. Carlitz, The number of binomial coefficients divisible by a fixed power of a prime, Rend. Circ. Mat. Palermo (2) 16 (1967), pp. 299-320.
K.-N. Chang and S.-C. Tsai, Exact solution of a minimal recurrence, Inform. Process. Lett. 75 (2000), 61-64.
Prerona Chatterjee, Kshitij Gajjar, and Anamay Tengse, Transparency Beyond VNP in the Monotone Setting, arXiv:2202.13103 [cs.CC], 2022.
S. R. Finch, P. Sebah, and Z.-Q. Bai, Odd Entries in Pascal's Trinomial Triangle, arXiv:0802.2654 [math.NT], 2008.
N. J. Fine, Binomial coefficients modulo a prime, Amer. Math. Monthly 54:10 (1947), pp. 89-92.
Philippe Flajolet, Peter Grabner, Peter Kirschenhofer, Helmut Prodinger, and Robert F. Tichy, Mellin Transforms And Asymptotics: Digital Sums, Theoret. Computer Sci. 23 (1994), 291-314.
Philippe Flajolet, Xavier Gourdon, and Philippe Dumas, Mellin transforms and asymptotics: harmonic sums Special volume on mathematical analysis of algorithms. Theoret. Comput. Sci. 144 (1995), no. 1-2, 3-58.
Philippe Flajolet and Robert Sedgewick, Mellin transforms and asymptotics: Finite differences and Rice's integrals, Theoretical Computer Science 144.1-2 (1995): 101-124.
P. J. Grabner and H.-K. Hwang, Digital sums and divide-and-conquer recurrences: Fourier expansions and absolute convergence, Constructive Approximation, Jan. 2005, Volume 21, Issue 2, pp 149-179.
H. Harborth, Number of Odd Binomial Coefficients, Proc. Amer. Math. Soc. 62, 19-22, 1977.
H. Harborth, Number of Odd Binomial Coefficients, Proc. Amer. Math. Soc. 62.1 (1977), 19-22. (Annotated scanned copy)
F. T. Howard, The number of binomial coefficients divisible by a fixed power of 2, Proceedings of the American Mathematical Society, Vol. 29:2 (Jul 1971), pp. 236-242.
Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, pp. 6, 27, 29-31.
Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Periodic minimum in the count of binomial coefficients not divisible by a prime, arXiv:2408.06817 [math.NT], 2024. See p. 1.
Akhlesh Lakhtakia and Russell Messier, Self-similar sequences and chaos from Gauss sums, Computers & graphics 13.1 (1989): 59-62.
Akhlesh Lakhtakia and Russell Messier, Self-similar sequences and chaos from Gauss sums, Computers & Graphics 13.1 (1989), 59-60. (Annotated scanned copy)
Giuseppe Lancia and Paolo Serafini, Computational Complexity and ILP Models for Pattern Problems in the Logical Analysis of Data, Algorithms (2021) Vol. 14, No. 8, 235.
N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.
Ralf Stephan, Divide-and-conquer generating functions. I. Elementary sequences, arXiv:math/0307027 [math.CO], 2003.
K. B. Stolarsky, Power and exponential sums of digital sums related to binomial coefficient parity, SIAM J. Appl. Math., 32 (1977), 717-730. See B(n). - N. J. A. Sloane, Apr 05 2014
Eric Weisstein's World of Mathematics, Pascal's Triangle
Eric Weisstein's World of Mathematics, Rule 90
Eric Weisstein's World of Mathematics, Stolarsky-Harborth Constant
FORMULA
a(n) = Sum_{k=0..n-1} 2^A000120(k). - Paul Barry, Jan 05 2005; simplified by N. J. A. Sloane, Apr 05 2014
For asymptotics see Stolarsky (1977). - N. J. A. Sloane, Apr 05 2014
a(n) = a(n-1) + A001316(n-1). a(2^n) = 3^n. - Henry Bottomley, Apr 05 2001
a(n) = n^(log_2(3))*G(log_2(n)) where G(x) is a function of period 1 defined by its Fourier series. - Benoit Cloitre, Aug 16 2002; formula modified by S. R. Finch, Dec 31 2007
G.f.: (x/(1-x))*Product_{k>=0} (1 + 2*x^2^k). - Ralf Stephan, Jun 01 2003; corrected by Herbert S. Wilf, Jun 16 2005
a(1) = 1, a(n) = 2*a(floor(n/2)) + a(ceiling(n/2)).
a(n) = 3*a(floor(n/2)) + (n mod 2)*2^A000120(n-1). - M. F. Hasler, May 03 2009
a(n) = Sum_{k=0..floor(log_2(n))} 2^k * A360189(n-1,k). - Alois P. Heinz, Mar 06 2023
MAPLE
f:=proc(n) option remember;
if n <= 1 then n elif n mod 2 = 0 then 3*f(n/2)
else 2*f((n-1)/2)+f((n+1)/2); fi; end;
[seq(f(n), n=0..130)]; # N. J. A. Sloane, Jul 29 2014
MATHEMATICA
f[n_] := Sum[ Mod[ Binomial[n, k], 2], {k, 0, n} ]; Table[ Sum[ f[k], {k, 0, n} ], {n, 0, 100} ]
Join[{0}, Accumulate[Count[#, _?OddQ]&/@Table[Binomial[n, k], {n, 0, 60}, {k, 0, n}]]] (* Harvey P. Dale, Dec 10 2014 *)
FoldList[Plus, 0, Total /@ CellularAutomaton[90, Join[Table[0, {#}], {1}, Table[0, {#}]], #]][[2 ;; -1]] &@50 (* Bradley Klee, Dec 23 2018 *)
Join[{0}, Accumulate[2^DigitCount[Range[0, 127], 2, 1]]] (* Paolo Xausa, Oct 24 2024 *)
Join[{0}, Accumulate[2^Nest[Join[#, #+1]&, {0}, 7]]] (* Paolo Xausa, Oct 24 2024, after IWABUCHI Yu(u)ki in A000120 *)
PROG
(PARI) A006046(n)={ n<2 & return(n); A006046(n\2)*3+if(n%2, 1<<norml2(binary(n\2))) } \\ M. F. Hasler, May 03 2009
(PARI) a(n) = if(!n, 0, my(r=0, t=1); forstep(i=logint(n, 2), 0, -1, r*=3; if(bittest(n, i), r+=t; t*=2)); r); \\ Ruud H.G. van Tol, Jul 06 2024
(Haskell)
a006046 = sum . concat . (`take` a047999_tabl)
-- Reinhard Zumkeller, Apr 09 2012
(Python) from functools import lru_cache
@lru_cache(maxsize=None)
def A006046(n):return n if n<=1 else 2*A006046((n-1)//2)+A006046((n+1)//2)if n%2 else 3*A006046(n//2) # Guillermo Hernández, Dec 31 2023
(Magma) [0] cat [n le 1 select 1 else 2*Self(Floor(n/2)) + Self(Floor(Ceiling(n/2))): n in [1..60]]; // Vincenzo Librandi, Aug 30 2016
CROSSREFS
Partial sums of A001316.
See A130665 for Sum 3^wt(n).
a(n) = A074330(n-1) + 1 for n >= 2. A080978(n) = 2*a(n) + 1. Cf. A080263.
Sequences of form a(n) = r*a(ceiling(n/2)) + s*a(floor(n/2)), a(1)=1, for (r,s) = (1,1), (1,2), (2,1), (1,3), (2,2), (3,1), (1,4), (2,3), (3,2), (4,1): A000027, A006046, A064194, A130665, A073121, A268524, A116520, A268525, A268526, A268527.
KEYWORD
nonn,nice,easy,look,changed
EXTENSIONS
More terms from James A. Sellers, Aug 21 2000
Definition expanded by N. J. A. Sloane, Feb 16 2016
STATUS
approved
A014486-encoding of the branch-reduced binomial-mod-2 binary trees.
+10
12
2, 50, 14642, 3969842, 267572689202, 69427226972978, 4581045692538239282, 301220569271221714981682, 1295918094920364850246919050705202, 332029112115571675270693117549056818
OFFSET
0,1
COMMENTS
These are obtained from the stunted binomial-mod-2 zigzag trees (A080263) either by extending each leaf to a branch of two leaves, or by branch-reducing every other such tree.
FORMULA
CROSSREFS
a(n) = A014486(A080295(n)). Same sequence in binary: A080294. Breadth-first-wise encoding: A080318. "Moose-trees" obtained from these: A080973. Cf. A080292, A080297.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 02 2003
STATUS
approved
Triangle read by rows giving successive states of cellular automaton generated by "Rule 90".
+10
8
1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0
OFFSET
0,1
COMMENTS
If either neighbor is 1 then new state is 1, otherwise new state is 0.
Row n has length 2n+1.
Rules #18, #26, #82, #90, #146, #154, #210, #218 all give rise to this sequence. - Hans Havermann
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 25.
EXAMPLE
1; 1,0,1; 1,0,0,0,1; 1,0,1,0,1,0,1; ...
MATHEMATICA
rows = 10; ca = CellularAutomaton[90, {{1}, 0}, rows-1]; Flatten[ Table[ca[[k, rows-k+1 ;; rows+k-1]], {k, 1, rows}]] (* Jean-François Alcover, May 24 2012 *)
CROSSREFS
Cf. A070950, A070887. Alternate rows of A047999. Interpreted as binary numbers: A038183. Interpreted as Zeckendorf-expansions: A048757. Drawn as binary trees: A080263.
KEYWORD
nonn,tabf,nice,easy,changed
AUTHOR
N. J. A. Sloane, May 19 2002
EXTENSIONS
More terms from Hans Havermann, May 26 2002
STATUS
approved
a(n) = Sum_{k=1..n} 2^b(k) where b(k) denotes the number of 1's in the binary representation of k.
+10
5
2, 4, 8, 10, 14, 18, 26, 28, 32, 36, 44, 48, 56, 64, 80, 82, 86, 90, 98, 102, 110, 118, 134, 138, 146, 154, 170, 178, 194, 210, 242, 244, 248, 252, 260, 264, 272, 280, 296, 300, 308, 316, 332, 340, 356, 372, 404, 408, 416, 424, 440, 448, 464, 480, 512, 520, 536
OFFSET
1,1
LINKS
Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, p. 29.
FORMULA
a(n+1)-a(n) = A001316(n)
From Ralf Stephan, Oct 07 2003: (Start)
a(0)=0, a(2n) = 2a(n-1) + a(n) + 2, a(2n+1) = 3a(n) + 2.
G.f.: (1/(1-x)) * Product_{k>=0} (1 + 2x^2^k). (End)
MAPLE
f:= proc(n) option remember; if n::even then 2*procname(n/2-1)+procname(n/2)+2
else 3*procname((n-1)/2)+2
fi
end proc:
f(0):= 0:
map(f, [$1..100]); # Robert Israel, Oct 08 2020
MATHEMATICA
b[n_] := IntegerDigits[n, 2] // Total;
a[n_] := 2^(b /@ Range[n]) // Total;
Array[a, 100] (* Jean-François Alcover, Aug 16 2022 *)
PROG
(PARI) a(n)=sum(i=1, n, 2^sum(k=1, length(binary(i)), component(binary(i), k)))
CROSSREFS
a(n) = A006046(n+1)-1. Cf. A080263.
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Oct 06 2002
STATUS
approved

Search completed in 0.009 seconds