# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/
Search: id:a006046
Showing 1-1 of 1
%I A006046 M2445 #219 Feb 16 2025 08:32:29
%S A006046 0,1,3,5,9,11,15,19,27,29,33,37,45,49,57,65,81,83,87,91,99,103,111,
%T A006046 119,135,139,147,155,171,179,195,211,243,245,249,253,261,265,273,281,
%U A006046 297,301,309,317,333,341,357,373,405,409,417,425,441,449,465,481,513,521
%N A006046 Total number of odd entries in first n rows of Pascal's triangle: a(0) = 0, a(1) = 1, a(2k) = 3*a(k), a(2k+1) = 2*a(k) + a(k+1). a(n) = Sum_{i=0..n-1} 2^wt(i).
%C A006046 The graph has a blancmange or Takagi appearance. For the asymptotics, see the references by Flajolet with "Mellin" in the title. - _N. J. A. Sloane_, Mar 11 2021
%C A006046 The following alternative construction of this sequence is due to _Thomas Nordhaus_, Oct 31 2000: For each n >= 0 let f_n be the piecewise linear function given by the points (k /(2^n), a(k) / 3^n), k = 0, 1, ..., 2^n. f_n is a monotonic map from the interval [0,1] into itself, f_n(0) = 0, f_n(1) = 1. This sequence of functions converges uniformly. But the limiting function is not differentiable on a dense subset of this interval.
%C A006046 I submitted a problem to the Amer. Math. Monthly about an infinite family of non-convex sequences that solve a recurrence that involves minimization: a(1) = 1; a(n) = max { ua(k) + a(n-k) | 1 <= k <= n/2 }, for n > 1; here u is any real-valued constant >= 1. The case u=2 gives the present sequence. Cf. A130665 - A130667. - _Don Knuth_, Jun 18 2007
%C A006046 a(n) = sum of (n-1)-th row terms of triangle A166556. - _Gary W. Adamson_, Oct 17 2009
%C A006046 From _Gary W. Adamson_, Dec 06 2009: (Start)
%C A006046 Let M = an infinite lower triangular matrix with (1, 3, 2, 0, 0, 0, ...) in every column shifted down twice:
%C A006046 1;
%C A006046 3;
%C A006046 2; 1;
%C A006046 0, 3;
%C A006046 0, 2, 1;
%C A006046 0, 0, 3;
%C A006046 0, 0, 2, 1;
%C A006046 0, 0, 0, 3;
%C A006046 0, 0, 0, 2, 1;
%C A006046 ...
%C A006046 This sequence starting with "1" = lim_{n->infinity} M^n, the left-shifted vector considered as a sequence. (End)
%C A006046 a(n) is also the sum of all entries in rows 0 to n of Sierpiński's triangle A047999. - _Reinhard Zumkeller_, Apr 09 2012
%C A006046 The production matrix of Dec 06 2009 is equivalent to the following: Let p(x) = (1 + 3x + 2x^2). The sequence = P(x) * p(x^2) * p(x^4) * p(x^8) * .... The sequence divided by its aerated variant = (1, 3, 2, 0, 0, 0, ...). - _Gary W. Adamson_, Aug 26 2016
%C A006046 Also the total number of ON cells, rows 1 through n, for cellular automaton Rule 90 (Cf. A001316, A038183, also Mathworld Link). - _Bradley Klee_, Dec 22 2018
%D A006046 S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 2.16.
%D A006046 Flajolet, Philippe, and Mordecai Golin. "Mellin transforms and asymptotics." Acta Informatica 31.7 (1994): 673-696.
%D A006046 Flajolet, Philippe, Mireille Régnier, and Robert Sedgewick. "Some uses of the Mellin integral transform in the analysis of algorithms." in Combinatorial algorithms on words. Springer, 1985. 241-254.
%D A006046 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A006046 N. J. A. Sloane, Table of n, a(n) for n = 0..16383 (first 1000 terms from T. D. Noe)
%H A006046 L. Carlitz, The number of binomial coefficients divisible by a fixed power of a prime, Rend. Circ. Mat. Palermo (2) 16 (1967), pp. 299-320.
%H A006046 K.-N. Chang and S.-C. Tsai, Exact solution of a minimal recurrence, Inform. Process. Lett. 75 (2000), 61-64.
%H A006046 Prerona Chatterjee, Kshitij Gajjar, and Anamay Tengse, Transparency Beyond VNP in the Monotone Setting, arXiv:2202.13103 [cs.CC], 2022.
%H A006046 S. R. Finch, P. Sebah, and Z.-Q. Bai, Odd Entries in Pascal's Trinomial Triangle, arXiv:0802.2654 [math.NT], 2008.
%H A006046 N. J. Fine, Binomial coefficients modulo a prime, Amer. Math. Monthly 54:10 (1947), pp. 89-92.
%H A006046 Philippe Flajolet, Peter Grabner, Peter Kirschenhofer, Helmut Prodinger, and Robert F. Tichy, Mellin Transforms And Asymptotics: Digital Sums, Theoret. Computer Sci. 23 (1994), 291-314.
%H A006046 Philippe Flajolet, Xavier Gourdon, and Philippe Dumas, Mellin transforms and asymptotics: harmonic sums Special volume on mathematical analysis of algorithms. Theoret. Comput. Sci. 144 (1995), no. 1-2, 3-58.
%H A006046 Philippe Flajolet and Robert Sedgewick, Mellin transforms and asymptotics: Finite differences and Rice's integrals, Theoretical Computer Science 144.1-2 (1995): 101-124.
%H A006046 P. J. Grabner and H.-K. Hwang, Digital sums and divide-and-conquer recurrences: Fourier expansions and absolute convergence, Constructive Approximation, Jan. 2005, Volume 21, Issue 2, pp 149-179.
%H A006046 H. Harborth, Number of Odd Binomial Coefficients, Proc. Amer. Math. Soc. 62, 19-22, 1977.
%H A006046 H. Harborth, Number of Odd Binomial Coefficients, Proc. Amer. Math. Soc. 62.1 (1977), 19-22. (Annotated scanned copy)
%H A006046 F. T. Howard, The number of binomial coefficients divisible by a fixed power of 2, Proceedings of the American Mathematical Society, Vol. 29:2 (Jul 1971), pp. 236-242.
%H A006046 Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, pp. 6, 27, 29-31.
%H A006046 Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Periodic minimum in the count of binomial coefficients not divisible by a prime, arXiv:2408.06817 [math.NT], 2024. See p. 1.
%H A006046 Akhlesh Lakhtakia and Russell Messier, Self-similar sequences and chaos from Gauss sums, Computers & graphics 13.1 (1989): 59-62.
%H A006046 Akhlesh Lakhtakia and Russell Messier, Self-similar sequences and chaos from Gauss sums, Computers & Graphics 13.1 (1989), 59-60. (Annotated scanned copy)
%H A006046 A. Lakhtakia et al., Fractal sequences derived from the self-similar extensions of the Sierpinski gasket, J. Phys. A 21 (1988), 1925-1928.
%H A006046 Giuseppe Lancia and Paolo Serafini, Computational Complexity and ILP Models for Pattern Problems in the Logical Analysis of Data, Algorithms (2021) Vol. 14, No. 8, 235.
%H A006046 N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.
%H A006046 Ralf Stephan, Divide-and-conquer generating functions. I. Elementary sequences, arXiv:math/0307027 [math.CO], 2003.
%H A006046 K. B. Stolarsky, Power and exponential sums of digital sums related to binomial coefficient parity, SIAM J. Appl. Math., 32 (1977), 717-730. See B(n). - _N. J. A. Sloane_, Apr 05 2014
%H A006046 Eric Weisstein's World of Mathematics, Pascal's Triangle
%H A006046 Eric Weisstein's World of Mathematics, Rule 90
%H A006046 Eric Weisstein's World of Mathematics, Stolarsky-Harborth Constant
%H A006046 Index entries for triangles and arrays related to Pascal's triangle
%F A006046 a(n) = Sum_{k=0..n-1} 2^A000120(k). - _Paul Barry_, Jan 05 2005; simplified by _N. J. A. Sloane_, Apr 05 2014
%F A006046 For asymptotics see Stolarsky (1977). - _N. J. A. Sloane_, Apr 05 2014
%F A006046 a(n) = a(n-1) + A001316(n-1). a(2^n) = 3^n. - _Henry Bottomley_, Apr 05 2001
%F A006046 a(n) = n^(log_2(3))*G(log_2(n)) where G(x) is a function of period 1 defined by its Fourier series. - _Benoit Cloitre_, Aug 16 2002; formula modified by S. R. Finch, Dec 31 2007
%F A006046 G.f.: (x/(1-x))*Product_{k>=0} (1 + 2*x^2^k). - _Ralf Stephan_, Jun 01 2003; corrected by Herbert S. Wilf, Jun 16 2005
%F A006046 a(1) = 1, a(n) = 2*a(floor(n/2)) + a(ceiling(n/2)).
%F A006046 a(n) = 3*a(floor(n/2)) + (n mod 2)*2^A000120(n-1). - _M. F. Hasler_, May 03 2009
%F A006046 a(n) = Sum_{k=0..floor(log_2(n))} 2^k * A360189(n-1,k). - _Alois P. Heinz_, Mar 06 2023
%p A006046 f:=proc(n) option remember;
%p A006046 if n <= 1 then n elif n mod 2 = 0 then 3*f(n/2)
%p A006046 else 2*f((n-1)/2)+f((n+1)/2); fi; end;
%p A006046 [seq(f(n),n=0..130)]; # _N. J. A. Sloane_, Jul 29 2014
%t A006046 f[n_] := Sum[ Mod[ Binomial[n, k], 2], {k, 0, n} ]; Table[ Sum[ f[k], {k, 0, n} ], {n, 0, 100} ]
%t A006046 Join[{0},Accumulate[Count[#,_?OddQ]&/@Table[Binomial[n,k],{n,0,60},{k,0,n}]]] (* _Harvey P. Dale_, Dec 10 2014 *)
%t A006046 FoldList[Plus, 0, Total /@ CellularAutomaton[90, Join[Table[0, {#}], {1}, Table[0, {#}]], #]][[2 ;; -1]] &@50 (* _Bradley Klee_, Dec 23 2018 *)
%t A006046 Join[{0}, Accumulate[2^DigitCount[Range[0, 127], 2, 1]]] (* _Paolo Xausa_, Oct 24 2024 *)
%t A006046 Join[{0}, Accumulate[2^Nest[Join[#, #+1]&, {0}, 7]]] (* _Paolo Xausa_, Oct 24 2024, after _IWABUCHI Yu(u)ki_ in A000120 *)
%o A006046 (PARI) A006046(n)={ n<2 & return(n); A006046(n\2)*3+if(n%2,1<= 2. A080978(n) = 2*a(n) + 1. Cf. A080263.
%Y A006046 Cf. also A159912, A166556, A038183, A048896, A360189.
%Y A006046 Sequences of form a(n) = r*a(ceiling(n/2)) + s*a(floor(n/2)), a(1)=1, for (r,s) = (1,1), (1,2), (2,1), (1,3), (2,2), (3,1), (1,4), (2,3), (3,2), (4,1): A000027, A006046, A064194, A130665, A073121, A268524, A116520, A268525, A268526, A268527.
%K A006046 nonn,nice,easy,look,changed
%O A006046 0,3
%A A006046 _Jeffrey Shallit_
%E A006046 More terms from _James A. Sellers_, Aug 21 2000
%E A006046 Definition expanded by _N. J. A. Sloane_, Feb 16 2016
# Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE