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SELF-SIMILAR SEQUENCES AND CHAOS
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Abstract—It is shown that the quadratic Gauss sums form seif-similar sequences with well-defined scales
and similarity dimensions. It is also shown that Gauss sums can be modified to yield intricate chaotic

patterns.

1. FRACTAL SEQUENCES
A self-similar (fractal) sequence {f[n]} can be defined
by the power law

fls-n] = s%[n], (1

with n > O ranging over all positive integers, while
f[n] may be real or complex. The positive integer §
> 1 is called the scale of the sequence, whereas a > 0
is a real number which serves as the similarity (fractal )
dimension of the sequence. Provided f[n] # O, it
should be noted that

a =log(f[s-nl/f(n])/log(s-n/n), (2)

which serves to validate the fractal nature[1] of the
sequence by explicitly revealing the respective statuses
of g and s.

The sequence { f[n]} is completely determined by
the specification of only a subset of its members. These
members, countably infinite in number, are:

(i) STt or fIs],

(i) f[ml;m=2,3,4,..., 85— 2,5~ 1, and

(iii) f[m]; m > s, (m, s) = L.

From Eq. (1) it is readily seen that f[1] and f[s] are
linked by the relation

Ss1=sfI1]; (3)

hence, the specification of either one of them is suffi-
cient to determine the other. Furthermore, if m < s,
then m(mod s) = m, or m is relatively prime to s;
therefore, the specifications (ii) cannot be built up from
Eq. (1) and must be independently given. Lastly, the
specifications (iii) must also be made, since Eq. )
cannot be used to generate them if the greatest common
divisor of m and s is unity. But for any n > s, which
has s as one of its divisors, f[n] can be ascertained
through Eq. (1). In fractal parlance, the specifications
(i)~ (iii) collectively are the initiators of the sequence,
while the power law (1) serves as its generator[2].

A very simple example of such a sequence is the
following one,

- 1,3,0,9,0,0,0,27,0,0,0,0,0,0,0, 81, 0,0,0,

which has a scale s = 2 and a similarity dimension a
= log(3)/log(2). This sequence is replete with zeros,
but can be easily augmented to yield a more substantial
example,

1,3,5,9, 11, 15, 19, 27, 29, 33, 37, 45, 49, 57,
65, 81, 83, 87,91, 99, 103, 111, 119, 135, 139,
147, 155, 171, 179, 195, 211,243, ...  (4b)

which too has a scale s = 2 and a similarity dimension
a = log(3)/log(2). Yet another example is furnished
by the sequence

1,3, 6,8, 12, 18, 21, 27, 36, 38, 42, 48, 52,
60, 72, 78, 90, 108, 111, 117, 126, 132,
144, 162, 171, 189, 216, . .. (5)

which has a scale s = 3 and a similarity dimension a
=log(6)/10g(3).

2. FRACTAL SEQUENCES FROM GAUSS SUMS
The bi-indexed numbers defined as the quadratic
Gauss sum

0P, @)= Z,01s.. o P 20i(P/ D], (6)

where p and g are positive integers, provide interesting
examples of the fractal sequences defined above; i
= Y(—1) as usual. These numbers have been much
investigated in recent years, especially the celebrated
Gauss sums ¢(1, g) which have a long history[3] dating
back to the great Gauss himself. It has been shown by
Nagell[4] that

o(p, 9) = 2¢(p, q/4), ©)

provided p = 1is odd, and g = 16 is a power of 2. This
relation forms the basis of a family of fractal sequences
{flql},q=1,2,3,..., the parameter p identifying
the genus of the sequence within the family. The
members of the p-th sequence thus derived are given
by

Sl =1+ %)
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121 = V@i -(1 + 1)

0,0,0,0,0,0,0,0,0,0,0,0,243,... (4a)
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51451 = (p, 4%); k=1,2,3,---
f1aK12) = o(p, 417 k=11,2,3, -

with f,[¢g] = 0 otherwise. Note that o(p, 1) =1, and
o(p, 2) = 0 for odd p; it would have been nice to be
able to define f;[1] and f,[2] in terms of the sums (6),
but even so. The scale s for these sequences can be
immediately seen to be equal to 4, while the dimension
a = 0.5. Furthermore, | f,[¢]| is seen to be independent
of (odd) p.

Similar fractal sequences { fv[g]} can also be con-
structed by utilizing another identity given in[4],

o1, 29N) = (1 + HV(2°N), (8)

which holds for all integer N > 0 and g = 2. Such
sequences would have a scale s = 2, while their simi-
larity dimension would still be a = 0.5: verification of
this statement is given by the ratio

log(e(1, 2*N)/ (1, 247" N))/1og(2“N/2*"'N)
= log(V2)/log(2) = 0.5.  (9)

3. EXTENSION TO THE COMPLEX PLANE
The fractal sequences given in Section 2 are com-
prised of either zeros or complex numbers, but p and
q are positive integers. Thus, complex patterns cannot
be obtained from them, unlike the case of the Collatz
sequence (37 + 1)[5-7]. Recently, Berry and Gold-
berg[8] have studied the quadratic sum

Su(r)=2, 1, explinrr?], (10a)
which can specialize to
S,(2/9) = ¢(1, q). (10b)

The parameter 7 is always real in their study, and they
have worked out a renormalization transform to ex-
plore S (r) in the complex domain.

An extension of the quadratic Gauss sums can,
however, be fruitfully utilized to yield complicated
patterns provided p can be made complex. Accordingly,
we can define the function

where z and ¢ are complex. In general, the Julia sets
of the mapping z = F(z; g, c) yield very intricate
patterns. For ¢ = 1, F(z;g,¢) = c+ 1, which is not
very interesting. When ¢ = 2, then F(z; g, c)=c+1
+ exp[2wiz]. The Julia set for the resulting process
can be equivalently expressed as z = exp[2wi(c
+ 1)]exp[2miz], which is a take-off on the mapping
z= M exp[z] due to Misiurewicz[9] and Devaney[10].
When viewed on a monochrome monitor using the
program given here, the most distinguishing feature of
such sets is a multitude of swirling speckled bands of

varying sizes. For higher ¢, the detail is even more
spectacular, chiefly consisting of gouged-out bulbs of
different sizes. Color pictures are highly intricate; as
examples, see Figs. | and 2 for F(z;2,0) and F(z; 3,
0), respectively.

The function F(z; ¢, ¢) can be made even more
interesting by using higher order Gauss sums, or even
negative order sums, e.g., consider the function

F(zyq,n, ) =c+ 2 010 exp[2wizg~'r"],
(12)

in which the integer n can be zero, negative or positive.
Yet another generalization, reminiscent of the Cornu
spirals[6], is the function

F(zyo,n,c)=c+ f dr exp[2wiz(e + 1)7'r7],
0

(13)

where « > 0 is positive real.

Despite Gauss’ assertion that “the theory of numbers
is the Queen of mathematics” because queens do not
dirty their hands with grime, this branch of mathe-
matics is increasingly being applied. Thus, the qua-
dratic Gauss sums ¢(1, ) have been utilized in what
may be termed quadratic-residue phase gratings, the
ultimate in that application being the frosted glass and
the sound diffusors in concert halls[11]. And here, these
same sums have been linked to the eminently utilitar-
ian concepts of fractals and chaos.
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