[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a070211 -id:a070211
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of compositions of n with distinct differences.
+10
55
1, 1, 2, 3, 7, 13, 17, 34, 59, 105, 166, 279, 442, 730, 1157, 1927, 3045, 4741, 7527, 11667, 18048, 27928, 43334, 65861, 101385, 153404, 232287, 347643, 523721, 780083, 1165331, 1725966, 2561625, 3773838, 5561577, 8151209, 11920717, 17364461, 25269939, 36635775
OFFSET
0,3
COMMENTS
A composition of n is a finite sequence of positive integers summing to n.
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (3,1,2) are (-2,1).
EXAMPLE
The a(1) = 1 through a(6) = 17 compositions:
(1) (2) (3) (4) (5) (6)
(11) (12) (13) (14) (15)
(21) (22) (23) (24)
(31) (32) (33)
(112) (41) (42)
(121) (113) (51)
(211) (122) (114)
(131) (132)
(212) (141)
(221) (213)
(311) (231)
(1121) (312)
(1211) (411)
(1131)
(1221)
(1311)
(2112)
MATHEMATICA
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], UnsameQ@@Differences[#]&]], {n, 0, 15}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 10 2019
EXTENSIONS
More terms from Alois P. Heinz, May 11 2019
STATUS
approved
Number of arithmetic progressions (where the difference between adjacent terms is either positive, 0, or negative) of positive integers that sum to n.
+10
43
1, 2, 4, 5, 6, 10, 8, 10, 15, 14, 12, 22, 14, 18, 28, 21, 18, 34, 20, 28, 38, 28, 24, 46, 31, 32, 48, 38, 30, 62, 32, 40, 58, 42, 46, 73, 38, 46, 68, 58, 42, 84, 44, 56, 90, 56, 48, 94, 55, 70, 90, 66, 54, 106, 70, 74, 100, 70, 60, 130, 62, 74, 118, 81, 82, 130, 68, 84, 120
OFFSET
1,2
LINKS
Sadek Bouroubi and Nesrine Benyahia Tani, Integer partitions into arithmetic progressions, Rostok. Math. Kolloq. 64 (2009), 11-16.
Augustine O. Munagi, Combinatorics of integer partitions in arithmetic progression, Integers 10(1) (2010), 73-82.
Augustine O. Munagi and Temba Shonhiwa, On the partitions of a number into arithmetic progressions, Journal of Integer Sequences 11 (2008), Article 08.5.4.
A. N. Pacheco Pulido, Extensiones lineales de un poset y composiciones de números multipartitos, Maestría thesis, Universidad Nacional de Colombia, 2012.
FORMULA
a(n) = 2*A049988(n) - A000005(n).
G.f.: x/(1-x) + Sum_{k>=2} x^k * (1 + x^(k(k-1)/2)) / (1 - x^(k(k-1)/2)) / (1 -x^k).
EXAMPLE
From Gus Wiseman, May 15 2019: (Start)
The a(1) = 1 through a(8) = 10 compositions with equal differences:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (12) (13) (14) (15) (16) (17)
(21) (22) (23) (24) (25) (26)
(111) (31) (32) (33) (34) (35)
(1111) (41) (42) (43) (44)
(11111) (51) (52) (53)
(123) (61) (62)
(222) (1111111) (71)
(321) (2222)
(111111) (11111111)
(End)
MATHEMATICA
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], SameQ@@Differences[#]&]], {n, 0, 15}] (* returns a(0) = 1, Gus Wiseman, May 15 2019*)
KEYWORD
nonn
AUTHOR
Leroy Quet, Apr 17 2010
EXTENSIONS
Edited and extended by Max Alekseyev, May 03 2010
STATUS
approved
Number of log-concave compositions (ordered partitions) of n.
+10
34
1, 1, 2, 4, 6, 9, 14, 20, 26, 36, 47, 60, 80, 102, 127, 159, 194, 236, 291, 355, 425, 514, 611, 718, 856, 1009, 1182, 1381, 1605, 1861, 2156, 2496, 2873, 3299, 3778, 4301, 4902, 5574, 6325, 7176, 8116, 9152, 10317, 11610, 13028, 14611, 16354, 18259, 20365
OFFSET
0,3
COMMENTS
These are compositions with weakly decreasing first quotients, where the first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3). - Gus Wiseman, Mar 16 2021
EXAMPLE
Out of the 8 compositions of 4, only 2+1+1 and 1+1+2 are not log-concave, so a(4)=6.
From Gus Wiseman, Mar 15 2021: (Start)
The a(1) = 1 through a(6) = 14 compositions:
(1) (2) (3) (4) (5) (6)
(11) (12) (13) (14) (15)
(21) (22) (23) (24)
(111) (31) (32) (33)
(121) (41) (42)
(1111) (122) (51)
(131) (123)
(221) (132)
(11111) (141)
(222)
(231)
(321)
(1221)
(111111)
(End)
MATHEMATICA
(* This program is not suitable for computing a large number of terms *)
compos[n_] := Permutations /@ IntegerPartitions[n] // Flatten[#, 1]&;
logConcaveQ[p_] := And @@ Table[p[[i]]^2 >= p[[i-1]]*p[[i+1]], {i, 2, Length[p]-1}]; a[n_] := Count[compos[n], p_?logConcaveQ]; Table[an = a[n]; Print["a(", n, ") = ", an]; a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 29 2016 *)
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], GreaterEqual@@Divide@@@Reverse/@Partition[#, 2, 1]&]], {n, 0, 15}] (* Gus Wiseman, Mar 15 2021 *)
PROG
(Sage) def A069916(n) : return sum(all(p[i]^2 >= p[i-1] * p[i+1] for i in range(1, len(p)-1)) for p in Compositions(n)) # Eric M. Schmidt, Sep 29 2013
CROSSREFS
The version for differences instead of quotients is A070211.
A000005 counts constant compositions.
A000009 counts strictly increasing (or strictly decreasing) compositions.
A000041 counts weakly increasing (or weakly decreasing) compositions.
A001055 counts factorizations.
A002843 counts compositions with adjacent parts x <= 2y.
A003238 counts chains of divisors summing to n-1, with strict case A122651.
A003242 counts anti-run compositions.
A074206 counts ordered factorizations.
A167865 counts strict chains of divisors summing to n.
KEYWORD
nonn,nice,changed
AUTHOR
STATUS
approved
Number of compositions with alternating parts weakly decreasing (or weakly increasing).
+10
23
1, 1, 2, 4, 7, 12, 20, 32, 51, 79, 121, 182, 272, 399, 582, 839, 1200, 1700, 2394, 3342, 4640, 6397, 8771, 11955, 16217, 21878, 29386, 39285, 52301, 69334, 91570, 120465, 157929, 206313, 268644, 348674, 451185, 582074, 748830, 960676, 1229208, 1568716, 1997064
OFFSET
0,3
COMMENTS
These are finite sequences q of positive integers summing to n such that q(i) >= q(i+2) for all possible i.
The strict case (alternating parts are strictly decreasing) is A000041. Is there a bijective proof?
Yes. Construct a Ferrers diagram by placing odd parts horizontally and even parts vertically in a fishbone pattern. The resulting Ferrers diagram will be for an ordinary partition and the process is reversible. It does not appear that this method can be applied to give a formula for this sequence. - Andrew Howroyd, Mar 25 2021
FORMULA
G.f.: Sum_{k>=0} ([y^k] P(x,y))*([y^k] (1 + y)*P(x,y)), where P(x,y) = Product_{k>=1} 1/(1 - y*x^k). - Andrew Howroyd, Jan 16 2025
EXAMPLE
The a(1) = 1 through a(6) = 20 compositions:
(1) (2) (3) (4) (5) (6)
(11) (12) (13) (14) (15)
(21) (22) (23) (24)
(111) (31) (32) (33)
(121) (41) (42)
(211) (131) (51)
(1111) (212) (141)
(221) (222)
(311) (231)
(1211) (312)
(2111) (321)
(11111) (411)
(1212)
(1311)
(2121)
(2211)
(3111)
(12111)
(21111)
(111111)
MAPLE
b:= proc(n, i, j) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1, j)+b(n-i, min(n-i, j), min(n-i, i))))
end:
a:= n-> b(n$3):
seq(a(n), n=0..42); # Alois P. Heinz, Jan 16 2025
MATHEMATICA
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], GreaterEqual@@Plus@@@Reverse/@Partition[#, 2, 1]&]], {n, 0, 15}]
PROG
(PARI) seq(n)={my(p=1/prod(k=1, n, 1-y*x^k + O(x*x^n))); Vec(1+sum(k=1, n, polcoef(p, k, y)*(polcoef(p, k-1, y) + polcoef(p, k, y))))} \\ Andrew Howroyd, Mar 24 2021
CROSSREFS
The even-length case is A114921.
The version with alternating parts unequal is A224958 (unordered: A000726).
The version with alternating parts equal is A342527.
A000041 counts weakly increasing (or weakly decreasing) compositions.
A000203 adds up divisors.
A002843 counts compositions with all adjacent parts x <= 2y.
A003242 counts anti-run compositions.
A069916/A342492 = decreasing/increasing first quotients.
A070211/A325546 = weakly decreasing/increasing differences.
A175342/A325545 = constant/distinct differences.
A342495 = constant first quotients (unordered: A342496, strict: A342515, ranking: A342522).
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 24 2021
EXTENSIONS
Terms a(21) and beyond from Andrew Howroyd, Mar 24 2021
STATUS
approved
Number of compositions of n with equal differences up to sign.
+10
20
1, 1, 2, 4, 6, 8, 13, 12, 20, 24, 25, 29, 49, 40, 50, 64, 86, 80, 105, 102, 164, 175, 186, 208, 325, 316, 382, 476, 624, 660, 814, 961, 1331, 1500, 1739, 2140, 2877, 3274, 3939, 4901, 6345, 7448, 9054, 11157, 14315, 17181, 20769, 25843, 32947, 39639, 48257, 60075
OFFSET
0,3
COMMENTS
A composition of n is a finite sequence of positive integers summing to n.
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (3,1,2) are (-2,1).
EXAMPLE
The a(1) = 1 through a(8) = 20 compositions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (12) (13) (14) (15) (16) (17)
(21) (22) (23) (24) (25) (26)
(111) (31) (32) (33) (34) (35)
(121) (41) (42) (43) (44)
(1111) (131) (51) (52) (53)
(212) (123) (61) (62)
(11111) (141) (151) (71)
(222) (232) (161)
(321) (313) (242)
(1212) (12121) (323)
(2121) (1111111) (1232)
(111111) (1313)
(2123)
(2222)
(2321)
(3131)
(3212)
(21212)
(11111111)
MATHEMATICA
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], SameQ@@Abs[Differences[#]]&]], {n, 0, 15}]
PROG
(PARI)
step(R, n, s)={matrix(n, n, i, j, if(i>j, if(j>s, R[i-j, j-s]) + if(j+s<=n, R[i-j, j+s])) )}
w(n, s)={my(R=matid(n), t=0); while(R, R=step(R, n, s); t+=vecsum(R[n, ])); t}
a(n) = {numdiv(max(1, n)) + sum(s=1, n-1, w(n, s))} \\ Andrew Howroyd, Aug 22 2019
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 11 2019
EXTENSIONS
a(26)-a(42) from Lars Blomberg, May 30 2019
Terms a(43) and beyond from Andrew Howroyd, Aug 22 2019
STATUS
approved
Number of unimodal compositions of n+2 where the maximal part appears exactly twice.
+10
15
1, 0, 1, 2, 4, 6, 11, 16, 27, 40, 63, 92, 141, 202, 299, 426, 614, 862, 1222, 1694, 2362, 3242, 4456, 6054, 8229, 11072, 14891, 19872, 26477, 35050, 46320, 60866, 79827, 104194, 135703, 176008, 227791, 293702, 377874, 484554, 620011, 790952, 1006924
OFFSET
0,4
COMMENTS
Old name was: Expansion of a q-series.
a(n) is also the number of 2-colored partitions of n with the same number of parts in each color. - Shishuo Fu, May 30 2017
From Gus Wiseman, Mar 25 2021: (Start)
Also the number of even-length compositions of n with alternating parts weakly decreasing. Allowing odd lengths also gives A342528. The version with alternating parts strictly decreasing appears to be A064428. The a(2) = 1 through a(7) = 16 compositions are:
(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
(2,1) (2,2) (2,3) (2,4) (2,5)
(3,1) (3,2) (3,3) (3,4)
(1,1,1,1) (4,1) (4,2) (4,3)
(1,2,1,1) (5,1) (5,2)
(2,1,1,1) (1,2,1,2) (6,1)
(1,3,1,1) (1,3,1,2)
(2,1,2,1) (1,4,1,1)
(2,2,1,1) (2,2,1,2)
(3,1,1,1) (2,2,2,1)
(1,1,1,1,1,1) (2,3,1,1)
(3,1,2,1)
(3,2,1,1)
(4,1,1,1)
(1,2,1,1,1,1)
(2,1,1,1,1,1)
(End)
LINKS
S. Fu and D. Tang, On a generalized crank for k-colored partitions, arXiv:1705.10067 [math.CO], 2017.
B. Kim and J. Lovejoy, Ramanujan-type partial theta identities and rank differences for special unimodal sequences, Annals of Combinatorics, 19 (2015), 705-733.
FORMULA
G.f.: 1 + Sum_{k>0} (x^k / ((1-x)(1-x^2)...(1-x^k)))^2 = (1 + Sum_{k>0} 2 (-1)^k x^((k^2+k)/2) ) / (Product_{k>0} (1 - x^k))^2.
G.f.: 1 + x*(1 - G(0))/(1-x) where G(k) = 1 - x/(1-x^(k+1))^2/(1-x/(x-1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 23 2013
a(n) = A006330(n) - A001523(n). - Vaclav Kotesovec, Jun 22 2015
a(n) ~ Pi * exp(2*Pi*sqrt(n/3)) / (16 * 3^(5/4) * n^(7/4)). - Vaclav Kotesovec, Oct 24 2018
EXAMPLE
From Joerg Arndt, Jun 10 2013: (Start)
There are a(7)=16 such compositions of 7+2=9 where the maximal part appears twice:
01: [ 1 1 1 1 1 2 2 ]
02: [ 1 1 1 1 2 2 1 ]
03: [ 1 1 1 2 2 1 1 ]
04: [ 1 1 1 3 3 ]
05: [ 1 1 2 2 1 1 1 ]
06: [ 1 1 3 3 1 ]
07: [ 1 2 2 1 1 1 1 ]
08: [ 1 2 3 3 ]
09: [ 1 3 3 1 1 ]
10: [ 1 3 3 2 ]
11: [ 1 4 4 ]
12: [ 2 2 1 1 1 1 1 ]
13: [ 2 3 3 1 ]
14: [ 3 3 1 1 1 ]
15: [ 3 3 2 1 ]
16: [ 4 4 1 ]
(End)
MATHEMATICA
max = 50; s = (1+Sum[2*(-1)^k*q^(k(k+1)/2), {k, 1, max}])/QPochhammer[q]^2+ O[q]^max; CoefficientList[s, q] (* Jean-François Alcover, Nov 30 2015, from 1st g.f. *)
wdw[q_]:=And@@Table[q[[i]]>=q[[i+2]], {i, Length[q]-2}];
Table[Length[Select[Join@@Permutations/@Select[IntegerPartitions[n], EvenQ[Length[#]]&], wdw]], {n, 0, 15}] (* Gus Wiseman, Mar 25 2021 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( sum(k=0, n\2, x^(2*k) / prod(i=1, k, 1 - x^i, 1 + x * O(x^n))^2), n))};
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( sum(k=1, sqrtint(8*n + 1)\2, 2*(-1)^k * x^((k^2+k)/2), 1 + A) / eta(x + A)^2, n))};
CROSSREFS
Cf. A226541 (max part appears three times), A188674 (max part m appears m times), A001523 (max part appears any number of times).
Column k=2 of A247255.
A000041 counts weakly increasing (or weakly decreasing) compositions.
A000203 adds up divisors.
A002843 counts compositions with all adjacent parts x <= 2y.
A003242 counts anti-run compositions.
A034008 counts even-length compositions.
A065608 counts even-length compositions with alternating parts equal.
A342528 counts compositions with alternating parts weakly decreasing.
A342532 counts even-length compositions with alternating parts unequal.
KEYWORD
nonn
AUTHOR
Michael Somos, Jan 07 2006
EXTENSIONS
New name from Joerg Arndt, Jun 10 2013
STATUS
approved
Number of compositions of n with weakly increasing differences.
+10
13
1, 1, 2, 4, 7, 11, 19, 28, 41, 62, 87, 120, 170, 228, 303, 408, 534, 689, 899, 1145, 1449, 1842, 2306, 2863, 3571, 4398, 5386, 6610, 8039, 9716, 11775, 14157, 16938, 20293, 24166, 28643, 33995, 40134, 47199, 55540, 65088, 75994, 88776, 103328, 119886, 139126
OFFSET
0,3
COMMENTS
Also compositions of n whose plot is concave-up.
A composition of n is a finite sequence of positive integers summing to n.
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (3,1,2) are (-2,1).
EXAMPLE
The a(1) = 1 through a(6) = 19 compositions:
(1) (2) (3) (4) (5) (6)
(11) (12) (13) (14) (15)
(21) (22) (23) (24)
(111) (31) (32) (33)
(112) (41) (42)
(211) (113) (51)
(1111) (212) (114)
(311) (123)
(1112) (213)
(2111) (222)
(11111) (312)
(321)
(411)
(1113)
(2112)
(3111)
(11112)
(21111)
(111111)
MATHEMATICA
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], LessEqual@@Differences[#]&]], {n, 0, 15}]
PROG
(PARI) \\ Row sums of R(n) give A007294 (=breakdown by width).
R(n)={my(L=List(), v=vectorv(n, i, 1), w=1, t=1); while(v, listput(L, v); w++; t+=w; v=vectorv(n, i, sum(k=1, (i-w-1)\t + 1, v[i-w-(k-1)*t]))); Mat(L)}
seq(n)={my(M=R(n)); Vec(1 + sum(i=1, n, my(p=sum(w=1, min(#M, n\i), x^(w*i)*sum(j=1, n-i*w, x^j*M[j, w]))); x^i/(1 - x^i)*(1 + p + O(x*x^(n-i)))^2))} \\ Andrew Howroyd, Aug 28 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 10 2019
EXTENSIONS
More terms from Alois P. Heinz, May 11 2019
STATUS
approved
Number of strict integer partitions of n with no pair of consecutive parts relatively prime.
+10
13
1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 3, 1, 5, 1, 5, 4, 6, 3, 10, 3, 11, 7, 12, 3, 19, 5, 18, 12, 23, 9, 36, 11, 33, 21, 40, 20, 58, 19, 58, 35, 70, 31, 98, 36, 101, 65, 112, 56, 155, 64, 164, 97, 188, 88, 250, 112, 256, 157, 293, 145, 392, 163, 399, 241, 461, 242
OFFSET
0,7
LINKS
Fausto A. C. Cariboni, Table of n, a(n) for n = 0..500
EXAMPLE
The a(2) = 1 through a(20) = 11 partitions (A..K = 10..20):
2 3 4 5 6 7 8 9 A B C D E F G H I J K
42 62 63 64 84 86 96 A6 863 A8 964 C8
82 93 A4 A5 C4 962 C6 A63 E6
A2 C2 C3 E2 E4 F5
642 842 862 F3 G4
A42 G2 I2
864 A64
963 A82
A62 C62
C42 E42
8642
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&!MatchQ[#, {___, x_, y_, ___}/; GCD[x, y]==1]&]], {n, 0, 30}]
CROSSREFS
The non-strict case is A328187.
Partitions with all consecutive parts relatively prime are A328172, with strict case A328188.
Strict partitions with relatively prime parts are A078374.
Partitions with no consecutive divisibilities are A328171.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 14 2019
STATUS
approved
Number of compositions of n with strictly increasing differences.
+10
12
1, 1, 2, 3, 6, 8, 11, 18, 24, 30, 45, 57, 71, 96, 120, 148, 192, 235, 286, 354, 431, 518, 628, 752, 893, 1063, 1262, 1482, 1744, 2046, 2386, 2775, 3231, 3733, 4305, 4977, 5715, 6536, 7507, 8559, 9735, 11112, 12608, 14252, 16177, 18265, 20553, 23204, 26090, 29223
OFFSET
0,3
COMMENTS
A composition of n is a finite sequence of positive integers summing to n.
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (3,1,2) are (-2,1).
EXAMPLE
The a(1) = 1 through a(6) = 11 compositions:
(1) (2) (3) (4) (5) (6)
(11) (12) (13) (14) (15)
(21) (22) (23) (24)
(31) (32) (33)
(112) (41) (42)
(211) (113) (51)
(212) (114)
(311) (213)
(312)
(411)
(2112)
MATHEMATICA
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], Less@@Differences[#]&]], {n, 0, 15}]
PROG
(PARI) \\ Row sums of R(n) give A179269 (breakdown by width)
R(n)={my(L=List(), v=vectorv(n, i, 1), w=1, t=1); while(v, listput(L, v); w++; t+=w; v=vectorv(n, i, sum(k=1, (i-1)\t, v[i-k*t]))); Mat(L)}
seq(n)={my(M=R(n)); Vec(1 + sum(i=1, n, my(p=sum(w=1, min(#M, n\i), x^(w*i)*sum(j=1, n-i*w, x^j*M[j, w]))); x^i*(1 + x^i)*(1 + p + O(x*x^(n-i)))^2))} \\ Andrew Howroyd, Aug 27 2019
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 10 2019
EXTENSIONS
a(26)-a(42) from Lars Blomberg, May 30 2019
Terms a(43) and beyond from Andrew Howroyd, Aug 27 2019
STATUS
approved
Number of compositions of n with strictly decreasing differences.
+10
12
1, 1, 2, 3, 5, 8, 10, 13, 19, 23, 29, 38, 46, 55, 69, 80, 96, 115, 132, 154, 183, 207, 238, 276, 314, 356, 405, 455, 513, 579, 647, 724, 809, 897, 998, 1107, 1225, 1350, 1486, 1639, 1805, 1973, 2166, 2374, 2586, 2824, 3084, 3346, 3646, 3964, 4286, 4655, 5047
OFFSET
0,3
COMMENTS
A composition of n is a finite sequence of positive integers summing to n.
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (3,1,2) are (-2,1).
EXAMPLE
The a(1) = 1 through a(8) = 19 compositions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (12) (13) (14) (15) (16) (17)
(21) (22) (23) (24) (25) (26)
(31) (32) (33) (34) (35)
(121) (41) (42) (43) (44)
(122) (51) (52) (53)
(131) (132) (61) (62)
(221) (141) (133) (71)
(231) (142) (134)
(1221) (151) (143)
(232) (152)
(241) (161)
(331) (233)
(242)
(251)
(332)
(341)
(431)
(1331)
MAPLE
b:= proc(n, l, d) option remember; `if`(n=0, 1, add(`if`(l=0 or
j-l<d, b(n-j, j, `if`(l=0, infinity, j-l)), 0), j=1..n))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..52); # Alois P. Heinz, Jan 27 2024
MATHEMATICA
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], Greater@@Differences[#]&]], {n, 0, 15}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 10 2019
EXTENSIONS
a(26)-a(44) from Lars Blomberg, May 30 2019
a(45)-a(52) from Alois P. Heinz, Jan 27 2024
STATUS
approved

Search completed in 0.013 seconds