[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173258
Number of compositions of n where differences between neighboring parts are in {-1,1}.
23
1, 1, 1, 3, 2, 4, 5, 5, 7, 10, 9, 14, 16, 19, 24, 31, 35, 45, 55, 66, 84, 104, 124, 156, 192, 236, 292, 363, 444, 551, 681, 839, 1040, 1287, 1586, 1967, 2430, 3001, 3717, 4597, 5683, 7034, 8697, 10758, 13312, 16469, 20369, 25204, 31180, 38574, 47726, 59047
OFFSET
0,4
LINKS
John Tyler Rascoe, Illustration of n = 1..16
FORMULA
a(n) ~ c * d^n, where d=1.23729141259673487395949649334678514763130846902468..., c=1.134796087242490181499736234755111281606636700030106.... - Vaclav Kotesovec, May 01 2014
G.f.: 1 + Sum_{k>0} G(x,k) where G(x,k) = x^k*(1 + G(x,k+1) + G(x,k-1)) for k > 0 and G(x,0) = 0. - John Tyler Rascoe, Sep 16 2023
EXAMPLE
a(3) = 3: [3], [2,1], [1,2].
a(4) = 2: [4], [1,2,1].
a(5) = 4: [5], [3,2], [2,3], [2,1,2].
a(6) = 5: [6], [3,2,1], [2,1,2,1], [1,2,3], [1,2,1,2].
MAPLE
b:= proc(n, i) option remember;
`if`(n<1 or i<1, 0, `if`(n=i, 1, add(b(n-i, i+j), j=[-1, 1])))
end:
a:= n-> `if`(n=0, 1, add(b(n, j), j=1..n)):
seq(a(n), n=0..70);
MATHEMATICA
b[n_, i_] := b[n, i] = If[n < 1 || i < 1, 0, If[n == i, 1, Sum[b[n - i, i + j], {j, {-1, 1}}]]]; a[n_] := If[n == 0, 1, Sum[b[n, j], {j, 1, n}]]; Table[a[n], {n, 0, 70}] // Flatten (* Jean-François Alcover, Dec 13 2013, translated from Maple *)
PROG
(PARI)
step(R, n)={matrix(n, n, i, j, if(i>j, if(j>1, R[i-j, j-1]) + if(j+1<=n, R[i-j, j+1])) )}
a(n)={my(R=matid(n), t=(n==0), m=0); while(R, m++; t+=vecsum(R[n, ]); R=step(R, n)); t} \\ Andrew Howroyd, Aug 23 2019
CROSSREFS
Column k=1 of A214247, A214249.
Row sums of A309938, A364039.
Sequence in context: A286298 A128440 A063201 * A039858 A035558 A089401
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 08 2012
STATUS
approved