[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A167865
Number of partitions of n into distinct parts greater than 1, with each part divisible by the next.
95
1, 0, 1, 1, 1, 1, 2, 1, 2, 2, 2, 1, 4, 1, 3, 3, 3, 1, 5, 1, 5, 4, 3, 1, 6, 2, 5, 4, 5, 1, 9, 1, 6, 4, 4, 4, 8, 1, 6, 6, 7, 1, 11, 1, 8, 8, 4, 1, 10, 3, 10, 5, 8, 1, 11, 4, 10, 7, 6, 1, 13, 1, 10, 11, 7, 6, 15, 1, 9, 5, 11, 1, 14, 1, 9, 12, 8, 5, 15, 1, 16, 9, 8, 1, 18, 5, 12, 7, 10, 1, 21, 7, 13, 11, 5
OFFSET
0,7
COMMENTS
Number of lone-child-avoiding achiral rooted trees with n + 1 vertices, where a rooted tree is lone-child-avoiding if all terminal subtrees have at least two branches, and achiral if all branches directly under any given vertex are equal. The Matula-Goebel numbers of these trees are given by A331967. - Gus Wiseman, Feb 07 2020
FORMULA
a(0) = 1 and for n>=1, a(n) = Sum_{d|n, d>1} a((n-d)/d).
G.f. A(x) satisfies: A(x) = 1 + x^2*A(x^2) + x^3*A(x^3) + x^4*A(x^4) + ... - Ilya Gutkovskiy, May 09 2019
EXAMPLE
a(12) = 4: [12], [10,2], [9,3], [8,4].
a(14) = 3: [14], [12,2], [8,4,2].
a(18) = 5: [18], [16,2], [15,3], [12,6], [12,4,2].
From Gus Wiseman, Jul 13 2018: (Start)
The a(36) = 8 lone-child-avoiding achiral rooted trees with 37 vertices:
(oooooooooooooooooooooooooooooooooooo)
((oo)(oo)(oo)(oo)(oo)(oo)(oo)(oo)(oo)(oo)(oo)(oo))
((ooo)(ooo)(ooo)(ooo)(ooo)(ooo)(ooo)(ooo)(ooo))
((ooooo)(ooooo)(ooooo)(ooooo)(ooooo)(ooooo))
((oooooooo)(oooooooo)(oooooooo)(oooooooo))
(((ooo)(ooo))((ooo)(ooo))((ooo)(ooo))((ooo)(ooo)))
((ooooooooooo)(ooooooooooo)(ooooooooooo))
((ooooooooooooooooo)(ooooooooooooooooo))
(End)
MAPLE
with(numtheory):
a:= proc(n) option remember;
`if`(n=0, 1, add(a((n-d)/d), d=divisors(n) minus{1}))
end:
seq(a(n), n=0..200); # Alois P. Heinz, Mar 28 2011
MATHEMATICA
a[0] = 1; a[n_] := a[n] = DivisorSum[n, a[(n-#)/#]&, #>1&]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Oct 07 2015 *)
PROG
(PARI) { A167865(n) = if(n==0, return(1)); sumdiv(n, d, if(d>1, A167865((n-d)\d) ) ) }
CROSSREFS
The semi-achiral version is A320268.
Matula-Goebel numbers of these trees are A331967.
The semi-lone-child-avoiding version is A331991.
Achiral rooted trees are counted by A003238.
Sequence in context: A223853 A023645 A366769 * A218654 A054571 A336158
KEYWORD
nonn,look
AUTHOR
Max Alekseyev, Nov 13 2009
STATUS
approved