[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a010153 -id:a010153
     Sort: relevance | references | number | modified | created      Format: long | short | data
Decimal expansion of sqrt(3)/2.
+10
86
8, 6, 6, 0, 2, 5, 4, 0, 3, 7, 8, 4, 4, 3, 8, 6, 4, 6, 7, 6, 3, 7, 2, 3, 1, 7, 0, 7, 5, 2, 9, 3, 6, 1, 8, 3, 4, 7, 1, 4, 0, 2, 6, 2, 6, 9, 0, 5, 1, 9, 0, 3, 1, 4, 0, 2, 7, 9, 0, 3, 4, 8, 9, 7, 2, 5, 9, 6, 6, 5, 0, 8, 4, 5, 4, 4, 0, 0, 0, 1, 8, 5, 4, 0, 5, 7, 3, 0, 9, 3, 3, 7, 8, 6, 2, 4, 2, 8, 7, 8, 3, 7, 8, 1, 3
OFFSET
0,1
COMMENTS
This is the ratio of the height of an equilateral triangle to its base.
Essentially the same sequence arises from decimal expansion of square root of 75, which is 8.6602540378443864676372317...
Also the real part of i^(1/3), the cubic root of i. - Stanislav Sykora, Apr 25 2012
Gilbert & Pollak conjectured that this is the Steiner ratio rho_2, the least upper bound of the ratio of the length of the Steiner minimal tree to the length of the minimal tree in dimension 2. (See Ivanov & Tuzhilin for the status of this conjecture as of 2012.) - Charles R Greathouse IV, Dec 11 2012
Surface area of a regular icosahedron with unit edge is 5*sqrt(3), i.e., 10 times this constant. - Stanislav Sykora, Nov 29 2013
Circumscribed sphere radius for a cube with unit edges. - Stanislav Sykora, Feb 10 2014
Also the ratio between the height and the pitch, used in the Unified Thread Standard (UTS). - Enrique Pérez Herrero, Nov 13 2014
Area of a 30-60-90 triangle with shortest side equal to 1. - Wesley Ivan Hurt, Apr 09 2016
If a, b, c are the sides of a triangle ABC and h_a, h_b, h_c the corresponding altitudes, then (h_a+h_b+h_c) / (a+b+c) <= sqrt(3)/2; equality is obtained only when the triangle is equilateral (see Mitrinovic reference). - Bernard Schott, Sep 26 2022
REFERENCES
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 8.2, 8.3 and 8.6, pp. 484, 489, and 504.
Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Solid Geometry), pp. 450-451.
D. S. Mitrinovic, E. S. Barnes, D. C. B. Marsh, and J. R. M. Radok, Elementary Inequalities, Tutorial Text 1 (1964), P. Noordhoff LTD, Groningen, problem 6.8, page 114.
LINKS
E. N. Gilbert and H. O. Pollak, Steiner minimal trees, SIAM J. Appl. Math. 16, (1968), pp. 1-29.
A. O. Ivanov and A. A. Tuzhilin, The Steiner ratio Gilbert-Pollak conjecture is still open, Algorithmica 62:1-2 (2012), pp. 630-632.
Matt Parker, The mystery of 0.866025403784438646763723170752936183471402626905190314027903489, Stand-up Maths, YouTube video, Feb 14 2024.
Simon Plouffe, Plouffe's Inverter, sqrt(3)/2 to 10000 digits.
Simon Plouffe, Sqrt(3)/2 to 5000 digits.
Eric Weisstein's World of Mathematics, Lebesgue Minimal Problem.
Wikipedia, Icosahedron.
Wikipedia, Platonic solid.
FORMULA
Equals cos(30 degrees). - Kausthub Gudipati, Aug 15 2011
Equals A002194/2. - Stanislav Sykora, Nov 30 2013
From Amiram Eldar, Jun 29 2020: (Start)
Equals sin(Pi/3) = cos(Pi/6).
Equals Integral_{x=0..Pi/3} cos(x) dx. (End)
Equals 1/(10*A020832). - Bernard Schott, Sep 29 2022
Equals x^(x^(x^...)) where x = (3/4)^(1/sqrt(3)) (infinite power tower). - Michal Paulovic, Jun 25 2023
EXAMPLE
0.86602540378443864676372317...
MAPLE
Digits:=100: evalf(sqrt(3)/2); # Wesley Ivan Hurt, Apr 09 2016
MATHEMATICA
RealDigits[Sqrt[3]/2, 10, 200][[1]] (* Vladimir Joseph Stephan Orlovsky, Feb 21 2011 *)
PROG
(PARI) default(realprecision, 20080); x=10*(sqrt(3)/2); for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b010527.txt", n, " ", d)); \\ Harry J. Smith, Jun 02 2009
(PARI) sqrt(3)/2 \\ Michel Marcus, Apr 10 2016
(Magma) SetDefaultRealField(RealField(100)); Sqrt(3)/2; // G. C. Greubel, Nov 02 2018
CROSSREFS
Cf. A010153.
Cf. Platonic solids surfaces: A002194 (tetrahedron), A010469 (octahedron), A131595 (dodecahedron).
Cf. Platonic solids circumradii: A010503 (octahedron), A019881 (icosahedron), A179296 (dodecahedron), A187110 (tetrahedron).
Cf. A126664 (continued fraction), A144535/A144536 (convergents).
Cf. A002194, A010502, A020821, A104956, A152623 (other geometric inequalities).
KEYWORD
nonn,cons,easy,changed
EXTENSIONS
Last term corrected and more terms added by Harry J. Smith, Jun 02 2009
STATUS
approved
Decimal expansion of 1/sqrt(75).
+10
12
1, 1, 5, 4, 7, 0, 0, 5, 3, 8, 3, 7, 9, 2, 5, 1, 5, 2, 9, 0, 1, 8, 2, 9, 7, 5, 6, 1, 0, 0, 3, 9, 1, 4, 9, 1, 1, 2, 9, 5, 2, 0, 3, 5, 0, 2, 5, 4, 0, 2, 5, 3, 7, 5, 2, 0, 3, 7, 2, 0, 4, 6, 5, 2, 9, 6, 7, 9, 5, 5, 3, 4, 4, 6, 0, 5, 8, 6, 6, 6, 9, 1, 3, 8, 7, 4, 3, 0, 7, 9, 1, 1, 7, 1, 4, 9, 9, 0, 5
OFFSET
0,3
COMMENTS
Multiplied by 10 this is 2/sqrt(3). - Alonso del Arte, Apr 30 2012
2/sqrt(3) is Hermite's constant gamma_2. - Jean-François Alcover, Sep 02 2014, after Steven Finch.
2/sqrt(3) is the Lorentz factor for an object traveling at half the speed of light. - Sean Stroud, May 05 2019
LINKS
Steven R. Finch, Errata and Addenda to Mathematical Constants, arXiv:2001.00578 [math.HO], 2020, p. 62.
Yining Hu, Patterns in numbers and infinite sums and products, arXiv:1506.00151 [math.NT], 2015.
Samuel G. Moreno and Esther M. García, New Infinite Products of Cosines and Viète-Like Formulae, Mathematics Magazine, vol. 86, no. 1, 2013, pp. 15-25. See formula for 2/sqrt(3) page 15.
FORMULA
(csc(Pi/3))/10, where csc is the cosecant function. - Alonso del Arte, Apr 30 2012
Product_{n>=1} ((3*n+1)/(3*n+2))^((-1)^n), with offset 1. (see Hu link). - Michel Marcus, Jun 02 2015
From Amiram Eldar, Aug 02 2020: (Start)
2/sqrt(3) = Sum_{k>=0} binomial(2*k,k)/16^k.
2/sqrt(3) = 1 + Sum_{k>=1} (2*k-1)!!/((2*k)!! * 2^(2*k)). (End)
2/sqrt(3) = Product_{k>=1} (1 - (-1)^k/A047235(k)). - Amiram Eldar, Nov 22 2024
EXAMPLE
0.1154700538379251529...
MATHEMATICA
RealDigits[1/Sqrt[75], 10, 100][[1]] (* Alonso del Arte, Apr 30 2012 *)
PROG
(PARI) 75^-.5 \\ Charles R Greathouse IV, Mar 31 2016
CROSSREFS
Cf. A010153 (continued fraction, but missing the initial 0), A047235.
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved
Denominators of continued fraction convergents to sqrt(75).
+10
2
1, 1, 2, 3, 50, 53, 103, 156, 2599, 2755, 5354, 8109, 135098, 143207, 278305, 421512, 7022497, 7444009, 14466506, 21910515, 365034746, 386945261, 751980007, 1138925268, 18974784295, 20113709563, 39088493858, 59202203421, 986323748594, 1045525952015
OFFSET
0,3
FORMULA
G.f.: -(x^2-x-1)*(x^4+3*x^2+1) / (x^8-52*x^4+1). - Colin Barker, Nov 13 2013
a(n) = 52*a(n-4) - a(n-8). - Vincenzo Librandi, Dec 11 2013
MATHEMATICA
Denominator/@Convergents[Sqrt[75], 50] (* Vladimir Joseph Stephan Orlovsky, Jul 05 2011 *)
CoefficientList[Series[-(x^2 - x - 1) (x^4 + 3 x^2 + 1)/(x^8 - 52 x^4 + 1), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 11 2013 *)
LinearRecurrence[{0, 0, 0, 52, 0, 0, 0, -1}, {1, 1, 2, 3, 50, 53, 103, 156}, 40] (* Harvey P. Dale, Aug 03 2024 *)
PROG
(Magma) I:=[1, 1, 2, 3, 50, 53, 103, 156]; [n le 8 select I[n] else 52*Self(n-4)-Self(n-8): n in [1..40]]; // Vincenzo Librandi, Dec 11 2013
CROSSREFS
KEYWORD
nonn,cofr,frac,easy
AUTHOR
STATUS
approved

Search completed in 0.007 seconds