OFFSET
0,3
COMMENTS
Number of n-covers of a 2-set.
Boolean switching functions a(n,s) for s = 2.
Without the initial 0, this is row 1 of the convolution array A213778. - Clark Kimberling, Jun 21 2012
a(n) equals the second column of the triangle A355754. - Eric W. Weisstein, Mar 12 2024
REFERENCES
R. J. Clarke, Covering a set by subsets, Discrete Math., 81 (1990), 147-152.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. D. Noe, Table of n, a(n) for n = 0..1000
Milan Janjic, Hessenberg Matrices and Integer Sequences , J. Int. Seq. 13 (2010) # 10.7.8.
A. V. Jayanthan, S. A. Seyed Fakhari, I. Swanson, and S. Yassemi, Induced matching, ordered matching and Castelnuovo-Mumford regularity of bipartite graphs, arXiv:2405.06781 [math.AC], 2024. See p. 17.
Vladeta Jovovic, Binary matrices up to row and column permutations.
Index entries for linear recurrences with constant coefficients, signature (3,-2,-2,3,-1).
FORMULA
a(n) = A002623(n) - (n+1).
a(n) = n*(n-1)/2 + Sum_{j=1..floor((n+1)/2)} (n-2*j+1)*(n-2*j)/2. - N. J. A. Sloane, Nov 28 2003
From R. J. Mathar, Apr 01 2010: (Start)
a(n) = 5*n/12 - 1/16 + 5*n^2/8 + n^3/12 + (-1)^n/16.
a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5). (End)
a(n) = A181971(n+1, n-1) for n > 0. - Reinhard Zumkeller, Jul 09 2012
a(n) + a(n+1) = A008778(n). - R. J. Mathar, Mar 13 2021
E.g.f.: (x*(2*x^2 + 21*x + 27)*cosh(x) + (2*x^3 + 21*x^2 + 27*x - 3)*sinh(x))/24. - Stefano Spezia, Jul 27 2022
MATHEMATICA
CoefficientList[Series[x (1+x-x^2)/((1-x)^4(1+x)), {x, 0, 50}], x] (* or *) LinearRecurrence[{3, -2, -2, 3, -1}, {0, 1, 4, 9, 17}, 50] (* Harvey P. Dale, Apr 10 2012 *)
PROG
(PARI) a(n)=([0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1; -1, 3, -2, -2, 3]^n*[0; 1; 4; 9; 17])[1, 1] \\ Charles R Greathouse IV, Feb 06 2017
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
Additional comments from Alford Arnold
STATUS
approved