[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a003453 -id:a003453
     Sort: relevance | references | number | modified | created      Format: long | short | data
Expansion of x*(1+x-x^2)/((1-x)^4*(1+x)).
(Formerly M3360)
+10
13
0, 1, 4, 9, 17, 28, 43, 62, 86, 115, 150, 191, 239, 294, 357, 428, 508, 597, 696, 805, 925, 1056, 1199, 1354, 1522, 1703, 1898, 2107, 2331, 2570, 2825, 3096, 3384, 3689, 4012, 4353, 4713, 5092, 5491, 5910, 6350, 6811, 7294, 7799, 8327, 8878, 9453, 10052
OFFSET
0,3
COMMENTS
Number of n-covers of a 2-set.
Boolean switching functions a(n,s) for s = 2.
Without the initial 0, this is row 1 of the convolution array A213778. - Clark Kimberling, Jun 21 2012
a(n) equals the second column of the triangle A355754. - Eric W. Weisstein, Mar 12 2024
REFERENCES
R. J. Clarke, Covering a set by subsets, Discrete Math., 81 (1990), 147-152.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Milan Janjic, Hessenberg Matrices and Integer Sequences , J. Int. Seq. 13 (2010) # 10.7.8.
A. V. Jayanthan, S. A. Seyed Fakhari, I. Swanson, and S. Yassemi, Induced matching, ordered matching and Castelnuovo-Mumford regularity of bipartite graphs, arXiv:2405.06781 [math.AC], 2024. See p. 17.
FORMULA
a(n) = A002623(n) - (n+1).
a(n) = n*(n-1)/2 + Sum_{j=1..floor((n+1)/2)} (n-2*j+1)*(n-2*j)/2. - N. J. A. Sloane, Nov 28 2003
From R. J. Mathar, Apr 01 2010: (Start)
a(n) = 5*n/12 - 1/16 + 5*n^2/8 + n^3/12 + (-1)^n/16.
a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5). (End)
a(n) = A181971(n+1, n-1) for n > 0. - Reinhard Zumkeller, Jul 09 2012
a(n) + a(n+1) = A008778(n). - R. J. Mathar, Mar 13 2021
E.g.f.: (x*(2*x^2 + 21*x + 27)*cosh(x) + (2*x^3 + 21*x^2 + 27*x - 3)*sinh(x))/24. - Stefano Spezia, Jul 27 2022
MATHEMATICA
CoefficientList[Series[x (1+x-x^2)/((1-x)^4(1+x)), {x, 0, 50}], x] (* or *) LinearRecurrence[{3, -2, -2, 3, -1}, {0, 1, 4, 9, 17}, 50] (* Harvey P. Dale, Apr 10 2012 *)
PROG
(PARI) a(n)=([0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1; -1, 3, -2, -2, 3]^n*[0; 1; 4; 9; 17])[1, 1] \\ Charles R Greathouse IV, Feb 06 2017
CROSSREFS
John W. Layman observes that A003453 appears to be the alternating sum transform (PSumSIGN) of A005744.
Cf. A355754.
KEYWORD
nonn,easy,nice
EXTENSIONS
Additional comments from Alford Arnold
STATUS
approved
Triangle read by rows: T(n,k) = number of nonequivalent dissections of an n-gon into k polygons by nonintersecting diagonals up to rotation and reflection.
+10
8
1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 1, 2, 6, 7, 4, 1, 3, 11, 24, 24, 12, 1, 3, 17, 51, 89, 74, 27, 1, 4, 26, 109, 265, 371, 259, 82, 1, 4, 36, 194, 660, 1291, 1478, 891, 228, 1, 5, 50, 345, 1477, 3891, 6249, 6044, 3176, 733, 1, 5, 65, 550, 3000, 10061, 21524, 29133, 24302, 11326, 2282
OFFSET
3,8
LINKS
EXAMPLE
Triangle begins: (n >= 3, k >= 1)
1;
1, 1;
1, 1, 1;
1, 2, 3, 3;
1, 2, 6, 7, 4;
1, 3, 11, 24, 24, 12;
1, 3, 17, 51, 89, 74, 27;
1, 4, 26, 109, 265, 371, 259, 82;
1, 4, 36, 194, 660, 1291, 1478, 891, 228;
...
PROG
(PARI) \\ See A295419 for DissectionsModDihedral()
T=DissectionsModDihedral(apply(i->y, [1..12]));
for(n=3, #T, for(k=1, n-2, print1(polcoeff(T[n], k), ", ")); print)
CROSSREFS
Row sums are A001004.
Column k=3 is A003453.
Diagonals include A000207, A003449, A003450.
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Nov 24 2017
STATUS
approved
Number of nonequivalent dissections of an n-gon into 3 polygons by nonintersecting diagonals up to rotation.
(Formerly M3330)
+10
4
1, 4, 8, 16, 25, 40, 56, 80, 105, 140, 176, 224, 273, 336, 400, 480, 561, 660, 760, 880, 1001, 1144, 1288, 1456, 1625, 1820, 2016, 2240, 2465, 2720, 2976, 3264, 3553, 3876, 4200, 4560, 4921, 5320, 5720, 6160, 6601, 7084, 7568, 8096, 8625, 9200, 9776, 10400
OFFSET
5,2
COMMENTS
In other words, the number of 2-dissections of an n-gon modulo the cyclic action.
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
D. Bowman and A. Regev, Counting symmetry classes of dissections of a convex regular polygon, arXiv:1209.6270 [math.CO], 2012.
P. Lisonek, Closed forms for the number of polygon dissections, Journal of Symbolic Computation 20 (1995), 595-601.
Ronald C. Read, On general dissections of a polygon, Aequat. math. 18 (1978) 370-388.
FORMULA
G.f.: x^5 * (1 + 2*x - x^2 ) / ((1 - x)^4*(1 + x)^2).
See also the Maple code for an explicit formula.
a(n) = A006584(n+3) - A027656(n). - Yosu Yurramendi, Aug 07 2008
a(n) = (n-4)*(2*n^2-4*n-3*(1-(-1)^n))/24, for n>=5. - Luce ETIENNE, Apr 04 2015
MAPLE
T51:= proc(n)
if n mod 2 = 0 then n*(n-2)*(n-4)/12;
else (n+1)*(n-3)*(n-4)/12; fi end;
[seq(T51(n), n=5..80)]; # N. J. A. Sloane, Dec 28 2012
MATHEMATICA
Table[((n - 4) (2 n^2 - 4 n - 3 (1 - (-1)^n)) / 24), {n, 5, 60}] (* Vincenzo Librandi, Apr 05 2015 *)
CoefficientList[Series[(1+2*x-x^2)/((1-x)^4*(1+x)^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 05 2015 *)
PROG
(PARI) Vec((1 + 2*x - x^2 ) / ((1 - x)^4*(1 + x)^2) + O(x^50)) \\ Michel Marcus, Apr 04 2015
(PARI) \\ See A295495 for DissectionsModCyclic()
{ my(v=DissectionsModCyclic(apply(i->y, [1..30]))); apply(p->polcoeff(p, 3), v[5..#v]) } \\ Andrew Howroyd, Nov 24 2017
(Magma) [(n-4)*(2*n^2-4*n-3*(1-(-1)^n))/24: n in [5..60]]; // Vincenzo Librandi, Apr 05 2015
CROSSREFS
Column 3 of A295633.
KEYWORD
nonn
EXTENSIONS
Entry revised (following Bowman and Regev) by N. J. A. Sloane, Dec 28 2012
First formula adapted to offset by Vaclav Kotesovec, Apr 05 2015
Name clarified by Andrew Howroyd, Nov 25 2017
STATUS
approved
Triangle read by rows: T(n,k) is the number of simple connected graphs on n unlabeled nodes of degree at most 3 with k cycles and each node a member of exactly one cycle, 0 <= k <= floor(n/3).
+10
3
1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 0, 1, 2, 1, 0, 1, 3, 3, 0, 1, 3, 6, 0, 1, 4, 11, 2, 0, 1, 4, 17, 5, 0, 1, 5, 26, 17, 0, 1, 5, 36, 37, 2, 0, 1, 6, 50, 78, 12, 0, 1, 6, 65, 140, 44, 0, 1, 7, 85, 248, 131, 4, 0, 1, 7, 106, 396, 325, 23
OFFSET
0,18
COMMENTS
All such graphs are cactus graphs (with bridges allowed).
FORMULA
T(3*n,n) = A000672(n).
EXAMPLE
Triangle begins:
1;
0;
0;
0, 1;
0, 1;
0, 1;
0, 1, 1;
0, 1, 1;
0, 1, 2;
0, 1, 2, 1;
0, 1, 3, 3;
0, 1, 3, 6;
0, 1, 4, 11, 2;
0, 1, 4, 17, 5;
0, 1, 5, 26, 17;
0, 1, 5, 36, 37, 2;
...
PROG
(PARI)
raise(p, d) = {my(n=serprec(p, x)-1); substvec(p + O(x^(n\d+1)), [x, y], [x^d, y^d])}
R(n, y)={my(g=O(x^3)); for(n=1, (n-1)\2, my(p=x*(1 + g), p2=raise(p, 2)); g=x*y*(p^2/(1 - p) + (1 + p)*p2/(1 - p2))/2); g}
G(n, y=1)={my(g=R(n, y), p = x*(1+g) + O(x*x^n));
my( r=((1 + p)^2/(1 - raise(p, 2)) - 1)/2 );
my( c=-sum(d=1, n, eulerphi(d)/d*log(raise(1-p, d))) );
1 + (raise(g, 2) - g^2 + y*(r + c - 2*p - p^2 - raise(p, 2)))/2 }
T(n)={[Vecrev(p) | p<-Vec(G(n, y))]}
{my(A=T(15)); for(i=1, #A, print(A[i]))}
CROSSREFS
Columns 0..3 are A000007, A000012(n+3), A004526(n+4), A003453(n+4).
Row sums are A380805.
Cf. A000672, A380631 (with vertices of any degree).
KEYWORD
nonn,tabf,new
AUTHOR
Andrew Howroyd, Feb 24 2025
STATUS
approved
Number of nonequivalent dissections of an n-gon into 3 polygons by nonintersecting diagonals rooted at a cell up to rotation.
+10
2
3, 11, 24, 46, 75, 117, 168, 236, 315, 415, 528, 666, 819, 1001, 1200, 1432, 1683, 1971, 2280, 2630, 3003, 3421, 3864, 4356, 4875, 5447, 6048, 6706, 7395, 8145, 8928, 9776, 10659, 11611, 12600, 13662, 14763, 15941, 17160, 18460, 19803, 21231, 22704, 24266
OFFSET
5,1
LINKS
P. Lisonek, Closed forms for the number of polygon dissections, Journal of Symbolic Computation 20 (1995), 595-601.
Ronald C. Read, On general dissections of a polygon, Aequat. math. 18 (1978) 370-388.
FORMULA
Conjectures from Colin Barker, Nov 25 2017: (Start)
G.f.: x^5*(3 + 5*x - x^2 - x^3) / ((1 - x)^4*(1 + x)^2).
a(n) = (n-4)*(-5 + (-1)^n - 4*n + 2*n^2) / 8 for n>4.
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6) for n>10.
(End)
a(n) = Sum_{k=0..n-5} f(k), where f(n) = Sum_{k=0..n} (3 + lcm(k, 2)) (conjecture). - Jon Maiga, Nov 28 2018
PROG
(PARI) \\ See A003442 for DissectionsModCyclicRooted()
{ my(v=DissectionsModCyclicRooted(apply(i->y + O(y^4), [1..40]))); apply(p->polcoeff(p, 3), v[5..#v]) }
CROSSREFS
KEYWORD
nonn
AUTHOR
Andrew Howroyd, Nov 24 2017
STATUS
approved

Search completed in 0.005 seconds