[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A295634
Triangle read by rows: T(n,k) = number of nonequivalent dissections of an n-gon into k polygons by nonintersecting diagonals up to rotation and reflection.
6
1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 1, 2, 6, 7, 4, 1, 3, 11, 24, 24, 12, 1, 3, 17, 51, 89, 74, 27, 1, 4, 26, 109, 265, 371, 259, 82, 1, 4, 36, 194, 660, 1291, 1478, 891, 228, 1, 5, 50, 345, 1477, 3891, 6249, 6044, 3176, 733, 1, 5, 65, 550, 3000, 10061, 21524, 29133, 24302, 11326, 2282
OFFSET
3,8
LINKS
EXAMPLE
Triangle begins: (n >= 3, k >= 1)
1;
1, 1;
1, 1, 1;
1, 2, 3, 3;
1, 2, 6, 7, 4;
1, 3, 11, 24, 24, 12;
1, 3, 17, 51, 89, 74, 27;
1, 4, 26, 109, 265, 371, 259, 82;
1, 4, 36, 194, 660, 1291, 1478, 891, 228;
...
PROG
(PARI) \\ See A295419 for DissectionsModDihedral()
T=DissectionsModDihedral(apply(i->y, [1..12]));
for(n=3, #T, for(k=1, n-2, print1(polcoeff(T[n], k), ", ")); print)
CROSSREFS
Row sums are A001004.
Column k=3 is A003453.
Diagonals include A000207, A003449, A003450.
Sequence in context: A106595 A181608 A272873 * A317665 A329315 A377588
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Nov 24 2017
STATUS
approved