[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A380631
Triangle read by rows: T(n,k) is the number of simple connected graphs on n unlabeled nodes with k cycles and each node a member of exactly one cycle, 0 <= k <= floor(n/3).
5
1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 0, 1, 2, 2, 0, 1, 3, 5, 0, 1, 3, 10, 0, 1, 4, 17, 6, 0, 1, 4, 26, 18, 0, 1, 5, 38, 51, 0, 1, 5, 52, 106, 18, 0, 1, 6, 70, 205, 87, 0, 1, 6, 90, 350, 286, 0, 1, 7, 115, 579, 741, 66, 0, 1, 7, 142, 887, 1660, 406
OFFSET
0,18
COMMENTS
All such graphs are cactus graphs (with bridges allowed).
FORMULA
T(3*n, n) = A380634(n).
EXAMPLE
Triangle begins:
1;
0;
0;
0, 1;
0, 1;
0, 1;
0, 1, 1;
0, 1, 1;
0, 1, 2;
0, 1, 2, 2;
0, 1, 3, 5;
0, 1, 3, 10;
0, 1, 4, 17, 6;
0, 1, 4, 26, 18;
0, 1, 5, 38, 51;
0, 1, 5, 52, 106, 18;
...
PROG
(PARI)
EulerMTS(p)={my(n=serprec(p, x)-1, vars=variables(p)); exp(sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i, vars))/i))}
raise(p, d) = {my(n=serprec(p, x)-1); substvec(p + O(x^(n\d+1)), [x, y], [x^d, y^d])}
R(n, y)={my(g = O(x^3)); for(n=1, (n-1)\2, my(p=x*EulerMTS(g), p2=raise(p, 2)); g=p*y*(p^2/(1 - p) + (1 + p)*p2/(1 - p2))/2); g}
G(n, y=1)={my(g=R(n, y), p = x*EulerMTS(g) + O(x*x^n));
my( r=((1 + p)^2/(1 - raise(p, 2)) - 1)/2 );
my( c=-sum(d=1, n, eulerphi(d)/d*log(raise(1-p, d))) );
1 + (raise(g, 2) - g^2 + y*(r + c - 2*p - p^2 - raise(p, 2)))/2 }
T(n)={[Vecrev(p) | p<-Vec(G(n, y))]}
{ my(A=T(15)); for(i=1, #A, print(A[i])) }
CROSSREFS
Columns 0..2 are A000007, A000012(n+3), A008619(n+6).
Row sums are A380632.
Sequence in context: A091602 A336695 A035465 * A096144 A118401 A354786
KEYWORD
nonn,tabf,new
AUTHOR
Andrew Howroyd, Feb 24 2025
STATUS
approved