[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a002209 -id:a002209
     Sort: relevance | references | number | modified | created      Format: long | short | data
Erroneous version of A002209.
+20
0
2, 12, 8, 720, 720
OFFSET
1,1
REFERENCES
Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 529.
KEYWORD
dead
STATUS
approved
Triangle of Stirling numbers of first kind, s(n,k), n >= 0, 0 <= k <= n.
+10
214
1, 0, 1, 0, -1, 1, 0, 2, -3, 1, 0, -6, 11, -6, 1, 0, 24, -50, 35, -10, 1, 0, -120, 274, -225, 85, -15, 1, 0, 720, -1764, 1624, -735, 175, -21, 1, 0, -5040, 13068, -13132, 6769, -1960, 322, -28, 1, 0, 40320, -109584, 118124, -67284, 22449, -4536, 546, -36, 1, 0, -362880, 1026576, -1172700, 723680, -269325, 63273, -9450, 870, -45, 1
OFFSET
0,8
COMMENTS
The unsigned numbers are also called Stirling cycle numbers: |s(n,k)| = number of permutations of n objects with exactly k cycles.
Mirror image of the triangle A054654. - Philippe Deléham, Dec 30 2006
Also the triangle gives coefficients T(n,k) of x^k in the expansion of C(x,n) = (a(k)*x^k)/n!. - Mokhtar Mohamed, Dec 04 2012
From Wolfdieter Lang, Nov 14 2018: (Start)
This is the Sheffer triangle of Jabotinsky type (1, log(1 + x)). See the e.g.f. of the triangle below.
This is the inverse Sheffer triangle of the Stirling2 Sheffer triangle A008275.
The a-sequence of this Sheffer triangle (see a W. Lang link in A006232)
is from the e.g.f. A(x) = x/(exp(x) -1) a(n) = Bernoulli(n) = A027641(n)/A027642(n), for n >= 0. The z-sequence vanishes.
The Boas-Buck sequence for the recurrences of columns has o.g.f. B(x) = Sum_{n>=0} b(n)*x^n = 1/((1 + x)*log(1 + x)) - 1/x. b(n) = (-1)^(n+1)*A002208(n+1)/A002209(n+1), b = {-1/2, 5/12, -3/8, 251/720, -95/288, 19087/60480,...}. For the Boas-Buck recurrence of Riordan and Sheffer triangles see the Aug 10 2017 remark in A046521, adapted to the Sheffer case, also for two references. See the recurrence and example below. - Wolfdieter Lang, Nov 14 2018
Let G(n,m,k) be the number of simple labeled graphs on [n] with m edges and k components. Then T(n,k) = Sum (-1)^m*G(n,m,k). See the Read link below. Equivalently, T(n,k) = Sum mu(0,p) where the sum is over all set partitions p of [n] containing k blocks and mu is the Moebius function in the incidence algebra associated to the set partition lattice on [n]. - Geoffrey Critzer, May 11 2024
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 833.
L. Comtet, Advanced Combinatorics, Reidel, 1974; Chapter V, also p. 310.
J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 93.
F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 226.
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 245.
J. Riordan, An Introduction to Combinatorial Analysis, p. 48.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Paul Barry, Generalized Stirling Numbers, Exponential Riordan Arrays, and Toda Chain Equations, Journal of Integer Sequences, 17 (2014), #14.2.3.
Fatima Zohra Bensaci, Rachid Boumahdi, and Laala Khaldi, Finite Sums Involving Fibonacci and Lucas Numbers, J. Int. Seq. (2024). See p. 9.
R. M. Dickau, Stirling numbers of the first kind. [Illustrates the unsigned Stirling cycle numbers A132393.]
Askar Dzhumadil'daev and Damir Yeliussizov, Walks, partitions, and normal ordering, Electronic Journal of Combinatorics, 22(4) (2015), #P4.10.
Gergő Nemes, An Asymptotic Expansion for the Bernoulli Numbers of the Second Kind, J. Int. Seq. 14 (2011), #11.4.8.
A. Hennessy and Paul Barry, Generalized Stirling Numbers, Exponential Riordan Arrays, and Orthogonal Polynomials, J. Int. Seq. 14 (2011), #11.8.2 (A-number typo A048894).
NIST Digital Library of Mathematical Functions, Stirling Numbers
Ken Ono, Larry Rolen, and Florian Sprung, Zeta-Polynomials for modular form periods, p. 6, arXiv:1602.00752 [math.NT], 2016.
Ricardo A. Podestá, New identities for binary Krawtchouk polynomials, binomial coefficients and Catalan numbers, arXiv preprint arXiv:1603.09156 [math.CO], 2016.
Ronald Read, An Introduction to Chromatic Polynomials, Journal of Combinatorial Theory, 4(1968)52-71.
FORMULA
s(n, k) = A008275(n,k) for n >= 1, k = 1..n; column k = 0 is {1, repeat(0)}.
s(n, k) = s(n-1, k-1) - (n-1)*s(n-1, k), n, k >= 1; s(n, 0) = s(0, k) = 0; s(0, 0) = 1.
The unsigned numbers a(n, k)=|s(n, k)| satisfy a(n, k)=a(n-1, k-1)+(n-1)*a(n-1, k), n, k >= 1; a(n, 0) = a(0, k) = 0; a(0, 0) = 1.
Triangle (signed) = [0, -1, -1, -2, -2, -3, -3, -4, -4, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, ...]; Triangle(unsigned) = [0, 1, 1, 2, 2, 3, 3, 4, 4, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, ...]; where DELTA is Deléham's operator defined in A084938.
Sum_{k=0..n} (-m)^(n-k)*s(n, k) = A000142(n), A001147(n), A007559(n), A007696(n), ... for m = 1, 2, 3, 4, ... .- Philippe Deléham, Oct 29 2005
A008275*A007318 as infinite lower triangular matrices. - Gerald McGarvey, Aug 20 2009
T(n,k) = n!*[x^k]([t^n]exp(x*log(1+t))). - Peter Luschny, Dec 30 2010, updated Jun 07 2020
From Wolfdieter Lang, Nov 14 2018: (Start)
Recurrence from the Sheffer a-sequence (see a comment above): s(n, k) = (n/k)*Sum_{j=0..n-k} binomial(k-1+j, j)*Bernoulli(j)*s(n-1, k-1+j), for n >= 1 and k >= 1, with s(n, 0) = 0 if n >= 1, and s(0,0) = 1.
Boas-Buck type recurrence for column k: s(n, k) = (n!*k/(n - k))*Sum_{j=k..n-1} b(n-1-j)*s(j, k)/j!, for n >= 1 and k = 0..n-1, with input s(n, n) = 1. For sequence b see the Boas-Buck comment above. (End)
T(n,k) = Sum_{j=k..n} (-1)^(n-j)*A271705(n,j)*A216294(j,k). - Mélika Tebni, Feb 23 2023
EXAMPLE
Triangle begins:
n\k 0 1 2 3 4 5 6 7 8 9 ...
0 1
1 0 1
2 0 -1 1
3 0 2 -3 1
4 0 -6 11 -6 1
5 0 24 -50 35 -10 1
6 0 -120 274 -225 85 -15 1
7 0 720 -1764 1624 -735 175 -21 1
8 0 -5040 13068 -13132 6769 -1960 322 -28 1
9 0 40320 -109584 118124 -67284 22449 -4536 546 -36 1
... - Wolfdieter Lang, Aug 22 2012
------------------------------------------------------------------
From Wolfdieter Lang, Nov 14 2018: (Start)
Recurrence: s(5,2)= s(4, 1) - 4*s(4, 2) = -6 - 4*11 = -50.
Recurrence from the a- and z-sequences: s(6, 3) = 2*(1*1*(-50) + 3*(-1/2)*35 + 6*(1/6)*(-10) + 10*0*1) = -225.
Boas-Buck recurrence for column k = 3, with b = {-1/2, 5/12, -3/8, ...}:
s(6, 3) = 6!*((-3/8)*1/3! + (5/12)*(-6)/4! + (-1/2)*35/5!) = -225. (End)
MAPLE
A048994:= proc(n, k) combinat[stirling1](n, k) end: # R. J. Mathar, Feb 23 2009
seq(print(seq(coeff(expand(k!*binomial(x, k)), x, i), i=0..k)), k=0..9); # Peter Luschny, Jul 13 2009
A048994_row := proc(n) local k; seq(coeff(expand(pochhammer(x-n+1, n)), x, k), k=0..n) end: # Peter Luschny, Dec 30 2010
MATHEMATICA
Table[StirlingS1[n, m], {n, 0, 9}, {m, 0, n}] (* Peter Luschny, Dec 30 2010 *)
PROG
(PARI) a(n, k) = if(k<0 || k>n, 0, if(n==0, 1, (n-1)*a(n-1, k)+a(n-1, k-1)))
(PARI) trg(nn)=for (n=0, nn-1, for (k=0, n, print1(stirling(n, k, 1), ", "); ); print(); ); \\ Michel Marcus, Jan 19 2015
(Maxima) create_list(stirling1(n, k), n, 0, 12, k, 0, n); /* Emanuele Munarini, Mar 11 2011 */
(Haskell)
a048994 n k = a048994_tabl !! n !! k
a048994_row n = a048994_tabl !! n
a048994_tabl = map fst $ iterate (\(row, i) ->
(zipWith (-) ([0] ++ row) $ map (* i) (row ++ [0]), i + 1)) ([1], 0)
-- Reinhard Zumkeller, Mar 18 2013
CROSSREFS
See especially A008275 which is the main entry for this triangle. A132393 is an unsigned version, and A008276 is another version.
A000142(n) = Sum_{k=0..n} |s(n, k)| for n >= 0.
Row sums give A019590(n+1).
KEYWORD
sign,tabl,nice
EXTENSIONS
Offset corrected by R. J. Mathar, Feb 23 2009
Formula corrected by Philippe Deléham, Sep 10 2009
STATUS
approved
Triangle of unsigned Stirling numbers of the first kind (see A048994), read by rows, T(n,k) for 0 <= k <= n.
+10
121
1, 0, 1, 0, 1, 1, 0, 2, 3, 1, 0, 6, 11, 6, 1, 0, 24, 50, 35, 10, 1, 0, 120, 274, 225, 85, 15, 1, 0, 720, 1764, 1624, 735, 175, 21, 1, 0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1, 0, 40320, 109584, 118124, 67284, 22449, 4536, 546, 36, 1, 0, 362880, 1026576, 1172700, 723680, 269325, 63273, 9450, 870, 45, 1
OFFSET
0,8
COMMENTS
Another name: Triangle of signless Stirling numbers of the first kind.
Triangle T(n,k), 0<=k<=n, read by rows given by [0,1,1,2,2,3,3,4,4,5,5,...] DELTA [1,0,1,0,1,0,1,0,1,...] where DELTA is the operator defined in A084938.
A094645*A007318 as infinite lower triangular matrices.
Row sums are the factorial numbers. - Roger L. Bagula, Apr 18 2008
Exponential Riordan array [1/(1-x), log(1/(1-x))]. - Ralf Stephan, Feb 07 2014
Also the Bell transform of the factorial numbers (A000142). For the definition of the Bell transform see A264428 and for cross-references A265606. - Peter Luschny, Dec 31 2015
This is the lower triagonal Sheffer matrix of the associated or Jabotinsky type |S1| = (1, -log(1-x)) (see the W. Lang link under A006232 for the notation and references). This implies the e.g.f.s given below. |S1| is the transition matrix from the monomial basis {x^n} to the rising factorial basis {risefac(x,n)}, n >= 0. - Wolfdieter Lang, Feb 21 2017
T(n, k), for n >= k >= 1, is also the total volume of the n-k dimensional cell (polytope) built from the n-k orthogonal vectors of pairwise different lengths chosen from the set {1, 2, ..., n-1}. See the elementary symmetric function formula for T(n, k) and an example below. - Wolfdieter Lang, May 28 2017
From Wolfdieter Lang, Jul 20 2017: (Start)
The compositional inverse w.r.t. x of y = y(t;x) = x*(1 - t(-log(1-x)/x)) = x + t*log(1-x) is x = x(t;y) = ED(y,t) := Sum_{d>=0} D(d,t)*y^(d+1)/(d+1)!, the e.g.f. of the o.g.f.s D(d,t) = Sum_{m>=0} T(d+m, m)*t^m of the diagonal sequences of the present triangle. See the P. Bala link for a proof (there d = n-1, n >= 1, is the label for the diagonals).
This inversion gives D(d,t) = P(d, t)/(1-t)^(2*d+1), with the numerator polynomials P(d, t) = Sum_{m=0..d} A288874(d, m)*t^m. See an example below. See also the P. Bala formula in A112007. (End)
For n > 0, T(n,k) is the number of permutations of the integers from 1 to n which have k visible digits when viewed from a specific end, in the sense that a higher value hides a lower one in a subsequent position. - Ian Duff, Jul 12 2019
REFERENCES
Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 31, 187, 441, 996.
R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd. ed., Table 259, p. 259.
Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), pp. 149-150
LINKS
Roland Bacher and P. De La Harpe, Conjugacy growth series of some infinitely generated groups, hal-01285685v2, 2016.
Eli Bagno and David Garber, Combinatorics of q,r-analogues of Stirling numbers of type B, arXiv:2401.08365 [math.CO], 2024. See page 5.
J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure, arXiv:1307.2010 [math.CO], 2013.
Jean-Luc Baril and Sergey Kirgizov, The pure descent statistic on permutations, Preprint, 2016.
Jean-Luc Baril and Sergey Kirgizov, Transformation à la Foata for special kinds of descents and excedances, arXiv:2101.01928 [math.CO], 2021.
Jean-Luc Baril and José L. Ramírez, Some distributions in increasing and flattened permutations, arXiv:2410.15434 [math.CO], 2024. See p. 9.
Ricky X. F. Chen, A Note on the Generating Function for the Stirling Numbers of the First Kind, Journal of Integer Sequences, 18 (2015), #15.3.8.
W. S. Gray and M. Thitsa, System Interconnections and Combinatorial Integer Sequences, in: System Theory (SSST), 2013 45th Southeastern Symposium on, Date of Conference: 11-11 March 2013, Digital Object Identifier: 10.1109/SSST.2013.6524939.
John M. Holte, Carries, Combinatorics and an Amazing Matrix, The American Mathematical Monthly, Vol. 104, No. 2 (Feb., 1997), pp. 138-149.
Tanya Khovanova and J. B. Lewis, Skyscraper Numbers, J. Int. Seq. 16 (2013) #13.7.2.
Sergey Kitaev and Philip B. Zhang, Distributions of mesh patterns of short lengths, arXiv:1811.07679 [math.CO], 2018.
Shuzhen Lv and Philip B. Zhang, Joint equidistributions of mesh patterns 123 and 321 with symmetric and antipodal shadings, arXiv:2501.00357 [math.CO], 2024. See p. 11.
Shi-Mei Ma, Some combinatorial sequences associated with context-free grammars, arXiv:1208.3104v2 [math.CO], 2012. - From N. J. A. Sloane, Aug 21 2012
Emanuele Munarini, Shifting Property for Riordan, Sheffer and Connection Constants Matrices, Journal of Integer Sequences, Vol. 20 (2017), Article 17.8.2.
Emanuele Munarini, Combinatorial identities involving the central coefficients of a Sheffer matrix, Applicable Analysis and Discrete Mathematics (2019) Vol. 13, 495-517.
E. G. Santos, Counting non-attacking chess pieces placements: Bishops and Anassas, arXiv:2411.16492 [math.CO], 2024. See p. 2.
X.-T. Su, D.-Y. Yang, and W.-W. Zhang, A note on the generalized factorial, Australasian Journal of Combinatorics, Volume 56 (2013), Pages 133-137.
Benjamin Testart, Completing the enumeration of inversion sequences avoiding one or two patterns of length 3, arXiv:2407.07701 [math.CO], 2024. See p. 37.
FORMULA
T(n,k) = T(n-1,k-1)+(n-1)*T(n-1,k), n,k>=1; T(n,0)=T(0,k); T(0,0)=1.
Sum_{k=0..n} T(n,k)*x^(n-k) = A000012(n), A000142(n), A001147(n), A007559(n), A007696(n), A008548(n), A008542(n), A045754(n), A045755(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8 respectively. - Philippe Deléham, Nov 13 2007
Expand 1/(1-t)^x = Sum_{n>=0}p(x,n)*t^n/n!; then the coefficients of the p(x,n) produce the triangle. - Roger L. Bagula, Apr 18 2008
Sum_{k=0..n} T(n,k)*2^k*x^(n-k) = A000142(n+1), A000165(n), A008544(n), A001813(n), A047055(n), A047657(n), A084947(n), A084948(n), A084949(n) for x = 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - Philippe Deléham, Sep 18 2008
a(n) = Sum_{k=0..n} T(n,k)*3^k*x^(n-k) = A001710(n+2), A001147(n+1), A032031(n), A008545(n), A047056(n), A011781(n), A144739(n), A144756(n), A144758(n) for x=1,2,3,4,5,6,7,8,9,respectively. - Philippe Deléham, Sep 20 2008
Sum_{k=0..n} T(n,k)*4^k*x^(n-k) = A001715(n+3), A002866(n+1), A007559(n+1), A047053(n), A008546(n), A049308(n), A144827(n), A144828(n), A144829(n) for x=1,2,3,4,5,6,7,8,9 respectively. - Philippe Deléham, Sep 21 2008
Sum_{k=0..n} x^k*T(n,k) = x*(1+x)*(2+x)*...*(n-1+x), n>=1. - Philippe Deléham, Oct 17 2008
From Wolfdieter Lang, Feb 21 2017: (Start)
E.g.f. k-th column: (-log(1 - x))^k, k >= 0.
E.g.f. triangle (see the Apr 18 2008 Baluga comment): exp(-x*log(1-z)).
E.g.f. a-sequence: x/(1 - exp(-x)). See A164555/A027642. The e.g.f. for the z-sequence is 0. (End)
From Wolfdieter Lang, May 28 2017: (Start)
The row polynomials R(n, x) = Sum_{k=0..n} T(n, k)*x^k, for n >= 0, are R(n, x) = risefac(x,n-1) := Product_{j=0..n-1} x+j, with the empty product for n=0 put to 1. See the Feb 21 2017 comment above. This implies:
T(n, k) = sigma^{(n-1)}_(n-k), for n >= k >= 1, with the elementary symmetric functions sigma^{(n-1))_m of degree m in the n-1 symbols 1, 2, ..., n-1, with binomial(n-1, m) terms. See an example below.(End)
Boas-Buck type recurrence for column sequence k: T(n, k) = (n!*k/(n - k)) * Sum_{p=k..n-1} beta(n-1-p)*T(p, k)/p!, for n > k >= 0, with input T(k, k) = 1, and beta(k) = A002208(k+1)/A002209(k+1). See a comment and references in A286718. - Wolfdieter Lang, Aug 11 2017
T(n,k) = Sum_{j=k..n} j^(j-k)*binomial(j-1, k-1)*A354795(n,j) for n > 0. - Mélika Tebni, Mar 02 2023
n-th row polynomial: n!*Sum_{k = 0..2*n} (-1)^k*binomial(-x, k)*binomial(-x, 2*n-k) = n!*Sum_{k = 0..2*n} (-1)^k*binomial(1-x, k)*binomial(-x, 2*n-k). - Peter Bala, Mar 31 2024
EXAMPLE
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 2, 3, 1;
0, 6, 11, 6, 1;
0, 24, 50, 35, 10, 1;
0, 120, 274, 225, 85, 15, 1;
0, 720, 1764, 1624, 735, 175, 21, 1;
0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1;
...
---------------------------------------------------
Production matrix is
0, 1
0, 1, 1
0, 1, 2, 1
0, 1, 3, 3, 1
0, 1, 4, 6, 4, 1
0, 1, 5, 10, 10, 5, 1
0, 1, 6, 15, 20, 15, 6, 1
0, 1, 7, 21, 35, 35, 21, 7, 1
...
From Wolfdieter Lang, May 09 2017: (Start)
Three term recurrence: 50 = T(5, 2) = 1*6 + (5-1)*11 = 50.
Recurrence from the Sheffer a-sequence [1, 1/2, 1/6, 0, ...]: 50 = T(5, 2) = (5/2)*(binomial(1, 1)*1*6 + binomial(2, 1)*(1/2)*11 + binomial(3, 1)*(1/6)*6 + 0) = 50. The vanishing z-sequence produces the k=0 column from T(0, 0) = 1. (End)
Elementary symmetric function T(4, 2) = sigma^{(3)}_2 = 1*2 + 1*3 + 2*3 = 11. Here the cells (polytopes) are 3 rectangles with total area 11. - Wolfdieter Lang, May 28 2017
O.g.f.s of diagonals: d=2 (third diagonal) [0, 6, 50, ...] has D(2,t) = P(2, t)/(1-t)^5, with P(2, t) = 2 + t, the n = 2 row of A288874. - Wolfdieter Lang, Jul 20 2017
Boas-Buck recurrence for column k = 2 and n = 5: T(5, 2) = (5!*2/3)*((3/8)*T(2,2)/2! + (5/12)*T(3,2)/3! + (1/2)*T(4,2)/4!) = (5!*2/3)*(3/16 + (5/12)*3/3! + (1/2)*11/4!) = 50. The beta sequence begins: {1/2, 5/12, 3/8, ...}. - Wolfdieter Lang, Aug 11 2017
MAPLE
a132393_row := proc(n) local k; seq(coeff(expand(pochhammer (x, n)), x, k), k=0..n) end: # Peter Luschny, Nov 28 2010
MATHEMATICA
p[t_] = 1/(1 - t)^x; Table[ ExpandAll[(n!)SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], {n, 0, 10}]; a = Table[(n!)* CoefficientList[SeriesCoefficient[ Series[p[t], {t, 0, 30}], n], x], {n, 0, 10}]; Flatten[a] (* Roger L. Bagula, Apr 18 2008 *)
Flatten[Table[Abs[StirlingS1[n, i]], {n, 0, 10}, {i, 0, n}]] (* Harvey P. Dale, Feb 04 2014 *)
PROG
(Maxima) create_list(abs(stirling1(n, k)), n, 0, 12, k, 0, n); /* Emanuele Munarini, Mar 11 2011 */
(Haskell)
a132393 n k = a132393_tabl !! n !! k
a132393_row n = a132393_tabl !! n
a132393_tabl = map (map abs) a048994_tabl
-- Reinhard Zumkeller, Nov 06 2013
CROSSREFS
Essentially a duplicate of A048994. Cf. A008275, A008277, A112007, A130534, A288874, A354795.
KEYWORD
nonn,tabl,easy,changed
AUTHOR
Philippe Deléham, Nov 10 2007, Oct 15 2008, Oct 17 2008
STATUS
approved
Numerators of Cauchy numbers of first type.
(Formerly M5067)
+10
107
1, 1, -1, 1, -19, 9, -863, 1375, -33953, 57281, -3250433, 1891755, -13695779093, 24466579093, -132282840127, 240208245823, -111956703448001, 4573423873125, -30342376302478019, 56310194579604163
OFFSET
0,5
COMMENTS
The corresponding denominators are given in A006233.
-a(n+1), n>=0, also numerators from e.g.f. 1/x-1/log(1+x), with denominators A075178(n). |a(n+1)|, n>=0, numerators from e.g.f. 1/x+1/log(1-x) with denominators A075178(n). For formula of unsigned a(n) see A075178.
The signed rationals a(n)/A006233(n) provide the a-sequence for the Stirling2 Sheffer matrix A048993. See the W. Lang link concerning Sheffer a- and z-sequences.
Cauchy numbers of the first type are also called Bernoulli numbers of the second kind.
Named after the French mathematician, engineer and physicist Augustin-Louis Cauchy (1789-1857). - Amiram Eldar, Jun 17 2021
REFERENCES
Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 294.
Harold Jeffreys and B. S. Jeffreys, Methods of Mathematical Physics, Cambridge, 1946, p. 259.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Arnold Adelberg, 2-adic congruences of Norland numbers and of Bernoulli numbers of the second kind, J. Number Theory, Vol. 73, No. 1 (1998), pp. 47-58.
I. S. Gradsteyn and I. M. Ryzhik, Table of integrals, series and products, (1980), page 2 (formula 0.131).
L. B. W. Jolley, Summation of Series, Dover, (1961) (formula 70).
Wolfdieter Lang, Sheffer a- and z-sequences.
Wolfdieter Lang, On Generating functions of Diagonals Sequences of Sheffer and Riordan Number Triangles, arXiv:1708.01421 [math.NT], August 2017.
Hong-Mei Liu, Shu-Hua Qi and Shu-Yan Ding, Some Recurrence Relations for Cauchy Numbers of the First Kind, JIS, Vol. 13 (2010), Article 10.3.8.
Rui-Li Liu and Feng-Zhen Zhao, Log-concavity of two sequences related to Cauchy numbers of two kinds, Online Journal of Analytic Combinatorics, Issue 14 (2019), #09.
Donatella Merlini, Renzo Sprugnoli and M. Cecilia Verri, The Cauchy numbers, Discrete Math., Vol. 306, No. 16 (2006), pp. 1906-1920.
Eric Weisstein's World of Mathematics, Bernoulli Numbers of the Second Kind.
Ming Wu and Hao Pan, Sums of products of Bernoulli numbers of the second kind, Fib. Quart., Vol. 45, No. 2 (2007), pp. 146-150.
Feng-Zhen Zhao, Sums of products of Cauchy numbers, Discrete Math., Vol. 309, No. 12 (2009), pp. 3830-3842.
FORMULA
Numerator of integral of x(x-1)...(x-n+1) from 0 to 1.
E.g.f.: x/log(1+x). (Note: the numerator of the coefficient of x^n/n! is a(n) - Michael Somos, Jul 12 2014)
Numerator of Sum_{k=0..n} A048994(n,k)/(k+1). - Peter Luschny, Apr 28 2009
Sum_{k=1..n} 1/k = C + log(n) + 1/(2n) + Sum_{k=2..inf} |a(n)|/A075178(n-1) * 1/(n*(n+1)*...*(n+k-1)) (section 0.131 in Gradshteyn and Ryzhik tables). - Ralf Stephan, Jul 12 2014
a(n) = numerator(f(n) * n!), where f(0) = 1, f(n) = Sum_{k=0..n-1} (-1)^(n-k+1) * f(k) / (n-k+1). - Daniel Suteu, Feb 23 2018
Sum_{k = 1..n} (1/k) = A001620 + log(n) + 1/(2n) - Sum_{k >= 2} abs((a(k)/A006233(k)/k/(Product_{j = 0..k-1} (n-j)))), (see I. S. Gradsteyn, I. M. Ryzhik). - A.H.M. Smeets, Nov 14 2018
EXAMPLE
1, 1/2, -1/6, 1/4, -19/30, 9/4, -863/84, 1375/24, -33953/90, ...
MAPLE
seq(numer(add(stirling1(n, k)/(k+1), k=0..n)), n=0..20); # Peter Luschny, Apr 28 2009
MATHEMATICA
a[n_] := Numerator[ Sum[ StirlingS1[n, k]/(k + 1), {k, 0, n}]]; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Nov 03 2011, after Maple *)
a[n_] := Numerator[ Integrate[ Gamma[x+1]/Gamma[x-n+1], {x, 0, 1}]]; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Jul 29 2013 *)
a[ n_] := If[ n < 0, 0, (-1)^n Numerator @ Integrate[ Pochhammer[ -x, n], {x, 0, 1}]]; (* Michael Somos, Jul 12 2014 *)
a[ n_] := If[ n < 0, 0, Numerator [ n! SeriesCoefficient[ x / Log[ 1 + x], {x, 0, n}]]]; (* Michael Somos, Jul 12 2014 *)
Join[{1}, Array[Numerator[(1/#) Integrate[Product[(x - k), {k, 0, # - 1}], {x, 0, 1}]] &, 25]] (* Michael De Vlieger, Nov 13 2018 *)
PROG
(Sage)
def A006232_list(len):
f, R, C = 1, [1], [1]+[0]*(len-1)
for n in (1..len-1):
for k in range(n, 0, -1):
C[k] = -C[k-1] * k / (k + 1)
C[0] = -sum(C[k] for k in (1..n))
R.append((C[0]*f).numerator())
f *= n
return R
print(A006232_list(20)) # Peter Luschny, Feb 19 2016
(PARI) for(n=0, 20, print1(numerator( sum(k=0, n, stirling(n, k, 1)/(k+1)) ), ", ")) \\ G. C. Greubel, Nov 13 2018
(Magma) [Numerator((&+[StirlingFirst(n, k)/(k+1): k in [0..n]])): n in [0..20]]; // G. C. Greubel, Nov 13 2018
(Python) # Results are abs values
from fractions import gcd
aa, n, sden = [0, 1], 1, 1
while n < 20:
j, snom, sden, a = 1, 0, (n+1)*sden, 0
while j < len(aa):
snom, j = snom+aa[j]*(sden//(j+1)), j+1
nom, den = snom, sden
print(n, nom//gcd(nom, den))
aa, j = aa+[-aa[j-1]], j-1
while j > 0:
aa[j], j = n*aa[j]-aa[j-1], j-1
n = n+1 # A.H.M. Smeets, Nov 14 2018
(Python)
from fractions import Fraction
from sympy.functions.combinatorial.numbers import stirling
def A006232(n): return sum(Fraction(stirling(n, k, kind=1, signed=True), k+1) for k in range(n+1)).numerator # Chai Wah Wu, Jul 09 2023
CROSSREFS
KEYWORD
sign,frac,nice,changed
STATUS
approved
Denominators of Cauchy numbers of first type.
(Formerly M1558)
+10
37
1, 2, 6, 4, 30, 4, 84, 24, 90, 20, 132, 8, 5460, 840, 360, 48, 1530, 4, 1596, 168, 1980, 1320, 8280, 80, 81900, 6552, 1512, 112, 3480, 80, 114576, 7392, 117810, 7140, 1260, 8, 3838380, 5928, 936, 48, 81180, 440, 1191960, 55440, 869400, 38640, 236880, 224
OFFSET
0,2
COMMENTS
The corresponding numerators are given in A006232.
The signed rationals A006232(n)/a(n) provide the a-sequence for the Stirling2 Sheffer matrix A048993. See the W. Lang link concerning Sheffer a- and z-sequences.
Cauchy numbers of the first type are also called Bernoulli numbers of the second kind.
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 294.
H. Jeffreys and B. S. Jeffreys, Methods of Mathematical Physics, Cambridge, 1946, p. 259.
L. Jolley, Summation of Series, Chapman and Hall, London, 1925, pp. 14-15 (formula 70).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
I. S. Gradsteyna and I. M. Ryzhik, Table of integrals, series and products, (1980), page 2 (formula 0.131).
Rui-Li Liu and Feng-Zhen Zhao, Log-concavity of two sequences related to Cauchy numbers of two kinds, Online Journal of Analytic Combinatorics, Issue 14 (2019), #09.
Donatella Merlini, Renzo Sprugnoli and M. Cecilia Verri, The Cauchy numbers, Discrete Math. 306 (2006), no. 16, 1906-1920.
Eric Weisstein's World of Mathematics, Bernoulli Number of the Second Kind
Ming Wu and Hao Pan, Sums of products of Bernoulli numbers of the second kind, Fib. Quart., 45 (2007), 146-150.
Feng-Zhen Zhao, Sums of products of Cauchy numbers, Discrete Math., 309 (2009), 3830-3842.
FORMULA
Denominator of integral of x(x-1)...(x-n+1) from 0 to 1.
E.g.f.: x/log(1+x).
Denominator of Sum_{k=0..n} A048994(n,k)/(k+1). [Peter Luschny, Apr 28 2009]
a(n) = denominator(f(n) * n!), where f(0) = 1, f(n) = Sum_{k=0..n-1} (-1)^(n-k+1) * f(k) / (n-k+1). - Daniel Suteu, Feb 23 2018
Sum_{k = 1..n} (1/k) = A001620 + log(n) + 1/(2*n) - Sum_{k >= 2} abs((A006232(k)/a(k)/k/(Product_{j = 0..k-1} (n-j)))), (see I. S. Gradsteyn, I. M. Ryzhik). - A.H.M. Smeets, Nov 14 2018
EXAMPLE
1, 1/2, -1/6, 1/4, -19/30, 9/4, -863/84, 1375/24, -33953/90,...
MAPLE
seq(denom(add(stirling1(n, k)/(k+1), k=0..n)), n=0..12); # Peter Luschny, Apr 28 2009
MATHEMATICA
With[{nn=50}, Denominator[CoefficientList[Series[x/Log[1+x], {x, 0, nn}], x] Range[0, nn]!]] (* Harvey P. Dale, Oct 28 2011 *)
a[n_] := Sum[ StirlingS1[n, k]/(k+1), {k, 0, n}] // Denominator; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jan 10 2013, after Peter Luschny *)
Join[{1}, Array[Abs@Denominator[ Integrate[Product[(x - k), {k, 0, # - 1}], {x, 0, 1}]] &, 50]] (* Michael De Vlieger, Nov 13 2018 *)
PROG
(PARI) for(n=0, 50, print1(denominator( sum(k=0, n, stirling(n, k, 1)/(k+1)) ), ", ")) \\ G. C. Greubel, Nov 13 2018
(Magma) [Denominator((&+[StirlingFirst(n, k)/(k+1): k in [0..n]])): n in [0..50]]; // G. C. Greubel, Nov 13 2018
(Sage)
def A006233_list(len):
f, R, C = 1, [1], [1]+[0]*(len-1)
for n in (1..len-1):
for k in range(n, 0, -1):
C[k] = -C[k-1] * k / (k + 1)
C[0] = -sum(C[k] for k in (1..n))
R.append((C[0]*f).denominator())
f *= n+1
return R
print(A006233_list(50)) # G. C. Greubel, Nov 13 2018
(Python) # Results are abs values
from fractions import gcd
aa, n, sden = [0, 1], 1, 1
print(0, 1)
while n < 20:
j, snom, sden, a = 1, 0, (n+1)*sden, 0
while j < len(aa):
snom, j = snom+aa[j]*(sden//(j+1)), j+1
nom, den = snom, sden
print(n, den//gcd(nom, den))
aa, j = aa+[-aa[j-1]], j-1
while j > 0:
aa[j], j = n*aa[j]-aa[j-1], j-1
n += 1 # A.H.M. Smeets, Nov 14 2018
(Python)
from fractions import Fraction
from sympy.functions.combinatorial.numbers import stirling
def A006233(n): return sum(Fraction(stirling(n, k, kind=1, signed=True), k+1) for k in range(n+1)).denominator # Chai Wah Wu, Jul 09 2023
CROSSREFS
KEYWORD
nonn,frac,nice,easy,changed
STATUS
approved
Numerators of logarithmic numbers (also of Gregory coefficients G(n)).
(Formerly M5066 N2194)
+10
34
1, 1, -1, 1, -19, 3, -863, 275, -33953, 8183, -3250433, 4671, -13695779093, 2224234463, -132282840127, 2639651053, -111956703448001, 50188465, -2334028946344463, 301124035185049, -12365722323469980029
OFFSET
-1,5
COMMENTS
For n>0 G(n) = (-1)^(n+1) * Integral_{x=0..infinity} 1/((log^2(x)+Pi^2)*(x+1)^n). G(1)=1/2, and for n>1, G(n) = (-1)^(n+1)/(n+1) - Sum_{k=1..n-1} (-1)^k*G(n-k)/(k+1). Euler's constant is given by gamma = Sum_{n>=1} (-1)^(n+1)*G(n)/n. - Groux Roland, Jan 14 2009
The above series for Euler's constant was discovered circa 1780-1790 by the Italian mathematicians Gregorio Fontana (1735-1803) and Lorenzo Mascheroni (1750-1800), and was subsequently rediscovered several times (in particular, by Ernst Schröder in 1879, Niels E. Nørlund in 1923, Jan C. Kluyver in 1924, Charles Jordan in 1929, Kenter in 1999, and Victor Kowalenko in 2008). For more details, see references [Blagouchine, 2015] and [Blagouchine, 2016] below. - Iaroslav V. Blagouchine, Sep 16 2015
From Peter Bala, Sep 28 2012: (Start)
Gregory's coefficients {G(n)}n>=0 = {1,1/2,-1/12,1/24,-19/720,3/160,...} occur in Gregory's quadrature formula for numerical integration. The integral I = Integral_{x = m..n} f(x) dx may be approximated by the sum S = 1/2*f(m) + f(m+1) + ... + f(n-1) + 1/2*f(n). Gregory's formula for the difference is I - S = Sum_{k>=2} G(k)*{delta^(k-1)(f(n)) - delta^(k-1)(f(m))}, where delta is the difference operator delta(f(x)) = f(x+1) - f(x).
Gregory's formula is the discrete analog of the Euler-Maclaurin summation formula, with finite differences replacing derivatives and the Gregory coefficients replacing the Bernoulli numbers.
Alabdulmohsin, Section 7.3.3, gives several identities involving the Gregory coefficients including
Sum_{n >= 2} |G(n)|/(n-1) = (1/2)*(log(2*Pi) - 1 - euler_gamma) and
Sum_{n >= 1} |G(n)|/(n+1) = 1 - log(2). (End)
More series with Gregory coefficients, accurate bounds for them, their full asymptotics at large index, as well as many historical details related to them, are given in the articles by Blagouchine (see refs. below). - Iaroslav V. Blagouchine, May 06 2016
Named after the Scottish mathematician and astronomer James Gregory (1638-1675). - Amiram Eldar, Jun 16 2021
REFERENCES
Eugene Isaacson and Herbert Bishop Keller, Analysis of Numerical Methods, ISBN 0 471 42865 5, 1966, John Wiley and Sons, pp. 318-319. - Rudi Huysmans (rudi_huysmans(AT)hotmail.com), Apr 10 2000
Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 266.
Murray S. Klamkin, ed., Problems in Applied Mathematics: Selections from SIAM Review, SIAM, 1990, see page 101 [Problem 87-6].
Arnold N. Lowan and Herbert E. Salzer, Table of coefficients in numerical integration formulas, J. Math. Phys. Mass. Inst. Tech. 22 (1943), 49-50.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Ibrahim M. Alabdulmohsin, "The Language of Finite Differences", in Summability Calculus: A Comprehensive Theory of Fractional Finite Sums, Springer, Cham, 2018, pp. 133-149.
Ibrahim M. Alabdulmohsin, Summability Calculus, arXiv:1209.5739 [math.CA], 2012.
Iaroslav V. Blagouchine, A theorem for the closed-form evaluation of the first generalized Stieltjes constant at rational arguments and some related summations, Journal of Number Theory (Elsevier), vol. 148, pp. 537-592 and vol. 151, pp. 276-277, 2015. arXiv version, arXiv:1401.3724 [math.NT], 2014.
Iaroslav V. Blagouchine, Expansions of generalized Euler's constants into the series of polynomials in 1/pi^2 and into the formal enveloping series with rational coefficients only, Journal of Number Theory (Elsevier), vol. 158, pp. 365-396, 2016. arXiv version, arXiv:1501.00740 [math.NT], 2015.
Iaroslav V. Blagouchine, Two series expansions for the logarithm of the gamma function involving Stirling numbers and containing only rational coefficients for certain arguments related to 1/pi, Journal of Mathematical Analysis and Applications (Elsevier), 2016. arXiv version, arXiv:1408.3902 [math.NT], 2014-2016.
Iaroslav V. Blagouchine, Three notes on Ser's and Hasse's representation for the zeta-functions, Integers (2018) 18A, Article #A3.
Iaroslav V. Blagouchine and Marc-Antoine Coppo, A note on some constants related to the zeta-function and their relationship with the Gregory coefficients, arXiv:1703.08601 [math.NT], 2017. Also The Ramanujan Journal 47.2 (2018): 457-473.
Mark W. Coffey and Jonathan Sondow, Rebuttal of Kowalenko's paper as concerns the irrationality of Euler's constant, arXiv:1202.3093 [math.NT], 2012; Acta Appl. Math., Vol. 121 (2012), pp. 1-3.
J. C. Kluyver, Euler's constant and natural numbers, Proc. K. Ned. Akad. Wet., Vol. 27, No. 1-2 (1924), pp. 142-144.
Victor Kowalenko, Properties and Applications of the Reciprocal Logarithm Numbers, Acta Applic. Mathem. 109 (2) (2010) 413-437.
Arnold N. Lowan and Herbert E. Salzer, Table of coefficients in numerical integration formulas, J. Math. Phys. Mass. Inst. Tech., Vol. 22 (1943), pp. 49-50.[Annotated scanned copy]
Toshiki Matsusaka, Hideki Murahara, and Tomokazu Onozuka, Asymptotic coefficients of multiple zeta functions at the origin and generalized Gregory coefficients, arXiv:2312.14475 [math.NT], 2023.
Gergő Nemes, An Asymptotic Expansion for the Bernoulli Numbers of the Second Kind, J. Int. Seq. 14 (2011) # 11.4.8.
G. M. Phillips, Gregory's method for numerical integration, Amer. Math. Monthly, Vol. 79, No. 3 (1972), pp. 270-274.
Herbert E. Salzer, Table of coefficients for repeated integration with differences, Phil. Mag., Vol. 38 (1947), pp. 331-336. [Annotated scanned copy]
Raphael Schumacher, Rapidly Convergent Summation Formulas involving Stirling Series, arXiv preprint arXiv:1602.00336, 2016
Patricia C. Stamper, Table of Gregory coefficients, Math. Comp., Vol. 20, No. 95 (1966), p. 465.
Eric Weisstein's World of Mathematics, Logarithmic Number.
Ming Wu and Hao Pan, Sums of products of Bernoulli numbers of the second kind, Fib. Quart., Vol. 45, No. 2 (2007), pp. 146-150.
FORMULA
1/log(1+x) = Sum_{n>=-1} (a(n)/A002207(n)) * x^n. [corrected by Robert Israel, Oct 22 2015]
G(0)=0, G(n) = Sum_{i=1..n} (-1)^(i+1)*G(n-i)/(i+1)+(-1)^(n+1)*n/((2*(n+1)*(n+2)).
a(n)/A002207(n) = (1/n!) * Sum_{j=1..n+1} bernoulli(j)/j * S_1(n,j-1), where S_1(n,k) is the Stirling number of the first kind. - Barbara Margolius (b.margolius(AT)csuohio.edu), Jan 21 2002
a(n)/A002207(n) = 1/(n+1)! * Sum_{k=0..n+1} Stirling1(n+1,k)/(k+1). - Vladimir Kruchinin, Sep 23 2012
G(n) = (Integral_{x=0..1} x*(x-n)_n)/(n+1)!, where (a)_n is the Pochhammer symbol. - Vladimir Reshetnikov, Oct 22 2015
a(n)/A002207(n) = (1/n!)*Sum_{k=0..n+1} (-1)^(k+1)*Stirling2(n+k+1,k)* binomial(2*n+1,n+k)/((n+k+1)*(n+k)), n>0, with a(-1)/A002207(-1)=1, a(0)/A002207(0)=1/2. - Vladimir Kruchinin, Apr 05 2016
a(n) = numerator(f(n+1)), where f(0) = 1, f(n) = Sum_{k=0..n-1} (-1)^(n-k+1) * f(k) / (n-k+1). - Daniel Suteu, Nov 15 2018
EXAMPLE
Logarithmic numbers are 1, 1/2, -1/12, 1/24, -19/720, 3/160, -863/60480, 275/24192, -33953/3628800, 8183/1036800, -3250433/479001600, 4671/788480, -13695779093/2615348736000, 2224234463/475517952000, ... = A002206/A002207
MAPLE
series(1/log(1+x), x, 25);
with(combinat, stirling1):seq(numer(1/i!*sum(bernoulli(j)/(j)*stirling1(i, j-1), j=1..i+1)), i=1..24);
MATHEMATICA
a[n_] := Sum[StirlingS1[n+1, k]/((n+1)!*(k+1)), {k, 0, n+1}]; Table[a[n] // Numerator, {n, -1, 19}] (* Jean-François Alcover, Nov 29 2013, after Vladimir Kruchinin *)
Numerator@Table[Integrate[x Pochhammer[x - n, n], {x, 0, 1}]/(n + 1)!, {n, -1, 20}] (* Vladimir Reshetnikov, Oct 22 2015 *)
Numerator@CoefficientList[x/Log[1+x] + O[x]^21, x] (* Oliver Seipel, Jul 06 2024 *)
PROG
(Maxima) a(n):=sum(stirling1(n+1, k)/((n+1)!*(k+1)), k, 0, n+1);
makelist(num(a(n)), n, -1, 10); /* Vladimir Kruchinin, Sep 23 2012 */
(Maxima)
a(n):=if n=-1 then 1 else if n=0 then 1/2 else 1/n!*sum(((-1)^(k+1)*stirling2(n+k+1, k)*binomial(2*n+1, n+k))/((n+k+1)*(n+k)), k, 0, n+1); /* Vladimir Kruchinin, Apr 05 2016 */
(PARI) a(n) = numerator(sum(k=0, n+1, stirling(n+1, k, 1)/((n+1)!*(k+1)))); \\ Michel Marcus, Mar 20 2018
(Python)
from math import factorial
from fractions import Fraction
from sympy.functions.combinatorial.numbers import stirling
def A002206(n): return (sum(Fraction(stirling(n+1, k, kind=1, signed=True), k+1) for k in range(n+2))/factorial(n+1)).numerator # Chai Wah Wu, Feb 12 2023
(SageMath)
from functools import cache
@cache
def h(n):
return (-sum((-1)**k * h(n - k) / (k + 1) for k in range(1, n + 1))
+ (-1)**n * n / (2*(n + 1)*(n + 2)))
def a(n): return h(n).numer() if n > 0 else 1
print([a(n) for n in range(-1, 20)]) # Peter Luschny, Dec 12 2023
KEYWORD
sign,frac,nice,changed
STATUS
approved
Numerators of Cauchy numbers of second type (= Bernoulli numbers B_n^{(n)}).
(Formerly M3790 N1545)
+10
27
1, 1, 5, 9, 251, 475, 19087, 36799, 1070017, 2082753, 134211265, 262747265, 703604254357, 1382741929621, 8164168737599, 5362709743125, 8092989203533249, 15980174332775873, 12600467236042756559
OFFSET
0,3
COMMENTS
These coefficients (with alternating signs) are also known as the Nørlund [or Norlund, Noerlund or Nörlund] numbers. [After the Danish mathematician Niels Erik Nørlund (1885-1981). - Amiram Eldar, Jun 17 2021]
The denominators are found in A002790. The alternating rational sequence ((-1)^n)*a(n)/A002790(n)is the z-sequence for the Stirling2 triangle A008277(n+1,k+1), n>=k>=0. This is the Sheffer (exp(x),exp(x)-1) triangle. See the W. Lang link under A006232 for Sheffer a- and z-sequences with references, and the conversion to S. Roman's notation. The a-sequence is A006232(n)/A006233(n). - Wolfdieter Lang, Oct 06 2011 [This is the Sheffer triangle A007318*A048993. Added Jun 20 2017]
A simple series with the signless Cauchy numbers of second type C2(n) leads to Euler's constant: gamma = 1 - Sum_{n >=1} C2(n)/(n*(n+1)!) = 1 - 1/4 - 5/72 - 1/32 - 251/14400 - 19/1728 - 19087/2540160 - ..., see references [Blagouchine] below, as well as A075266 and A262235. - Iaroslav V. Blagouchine, Sep 15 2015
REFERENCES
Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 294.
P. Curtz, Intégration numérique des systèmes différentiels à conditions initiales, Centre de Calcul Scientifique de l'Armement, Arcueil, 1969.
Louis Melville Milne-Thompson, Calculus of Finite Differences, 1951, p. 136.
N. E. Nørlund, Vorlesungen über Differenzenrechnung, Springer-Verlag, Berlin, 1924.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Ibrahim M. Alabdulmohsin, The Language of Finite Differences, in Summability Calculus: A Comprehensive Theory of Fractional Finite Sums, Springer, Cham, 2018, pp. 133-149.
Iaroslav V. Blagouchine, Expansions of generalized Euler's constants into the series of polynomials in 1/pi^2 and into the formal enveloping series with rational coefficients only. Journal of Number Theory (Elsevier), vol. 158, pp. 365-396, 2016. arXiv version, arXiv:1501.00740 [math.NT], 2015.
Iaroslav V. Blagouchine, Two series expansions for the logarithm of the gamma function involving Stirling numbers and containing only rational coefficients for certain arguments related to 1/pi, Journal of Mathematical Analysis and Applications (Elsevier), 2016. arXiv version, arXiv:1408.3902 [math.NT], 2014-2016.
Iaroslav V. Blagouchine, Three notes on Ser's and Hasse's representation for the zeta-functions, Integers (2018) 18A, Article #A3.
Donghyun Kim and Jaeseong Oh, Extending the science fiction and the Loehr--Warrington formula, arXiv:2409.01041 [math.CO], 2024. See p. 32.
Takao Komatsu, Convolution Identities for Cauchy Numbers of the Second Kind, Kyushu Journal of Mathematics, Vol. 69, No. 1 (2015), pp. 125-144.
Guodong Liu, Some computational formulas for Norlund numbers, Fib. Quart., Vol. 45, No. 2 (2007), pp. 133-137.
Guo-Dong Liu, H. M. Srivastava, and Hai-Quing Wang, Some Formulas for a Family of Numbers Analogous to the Higher-Order Bernoulli Numbers, J. Int. Seq., Vol. 17 (2014), Article 14.4.6.
Rui-Li Liu and Feng-Zhen Zhao, Log-concavity of two sequences related to Cauchy numbers of two kinds, Online Journal of Analytic Combinatorics, Issue 14 (2019), #09.
Donatella Merlini, Renzo Sprugnoli and M. Cecilia Verri, The Cauchy numbers, Discrete Math., Vol. 306, No. 16 (2006), pp. 1906-1920.
Louis Melville Milne-Thompson, Calculus of Finite Differences, 1951. [Annotated scan of pages 135, 136 only]
N. E. Nørlund, Vorlesungen ueber Differenzenrechnung Springer, 1924, p. 461.
N. E. Nörlund, Vorlesungen über Differenzenrechnung, Springer-Verlag, Berlin, 1924; page 461 [Annotated scanned copy of pages 144-151 and 456-463]
Michael O. Rubinstein, Identities for the Riemann zeta function, Ramanujan J., Vol. 27, No. 1 (2012), pp. 29-42; arXiv preprint, arXiv:0812.2592 [math.NT], 2008-2009.
Feng-Zhen Zhao, Sums of products of Cauchy numbers, Discrete Math., Vol. 309, No. 12 (2009), pp. 3830-3842.
FORMULA
Numerator of integral of x(x+1)...(x+n-1) from 0 to 1.
E.g.f.: -x/((1-x)*log(1-x)). (Note: the numerator of the coefficient of x^n/n! is a(n). - Michael Somos, Jul 12 2014). E.g.f. rewritten by Iaroslav V. Blagouchine, May 07 2016
Numerator of Sum_{k=0..n} (-1)^(n-k) A008275(n,k)/(k+1). - Peter Luschny, Apr 28 2009
a(n) = numerator(n!*v(n)), where v(n) = 1 - Sum_{i=0..n-1} v(i)/(n-i+1), v(0)=1. - Vladimir Kruchinin, Aug 28 2013
EXAMPLE
1, 1/2, 5/6, 9/4, 251/30, 475/12, 19087/84, 36799/24, 1070017/90, ...
MAPLE
seq(numer(add((-1)^(n-k)*Stirling1(n, k)/(k+1), k=0..n)), n=0..10); # Peter Luschny, Apr 28 2009
MATHEMATICA
Table[Abs[Numerator[NorlundB[n, n]]], {n, 0, 30}](* Vladimir Joseph Stephan Orlovsky, Dec 30 2010 *)
a[ n_] := If[ n < 0, 0, (-1)^n Numerator @ NorlundB[ n, n]]; (* Michael Somos, Jul 12 2014 *)
a[ n_] := If[ n < 0, 0, Numerator@Integrate[ Pochhammer[ x, n], {x, 0, 1}]]; (* Michael Somos, Jul 12 2014 *)
a[ n_] := If[ n < 0, 0, Numerator[ n! SeriesCoefficient[ -x / ((1 - x) Log[ 1 - x]), {x, 0, n}]]]; (* Michael Somos, Jul 12 2014 *)
a[ n_] := If[ n < 0, 0, (-1)^n Numerator[ n! SeriesCoefficient[ (x / (Exp[x] - 1))^n, {x, 0, n}]]]; (* Michael Somos, Jul 12 2014 *)
PROG
(Maxima) v(n):=if n=0 then 1 else 1-sum(v(i)/(n-i+1), i, 0, n-1);
makelist(num(n!*v(n)), n, 0, 10); /* Vladimir Kruchinin, Aug 28 2013 */
(Magma) m:=25; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(-x/((1-x)*Log(1-x)) )); [Numerator(Factorial(n-1)*b[n]): n in [1..m-1]]; // G. C. Greubel, Oct 29 2018
KEYWORD
nonn,frac,easy,nice
STATUS
approved
Triangle of coefficients in expansion of (x+1)*(x+3)*...*(x + 2n - 1) in rising powers of x.
+10
27
1, 1, 1, 3, 4, 1, 15, 23, 9, 1, 105, 176, 86, 16, 1, 945, 1689, 950, 230, 25, 1, 10395, 19524, 12139, 3480, 505, 36, 1, 135135, 264207, 177331, 57379, 10045, 973, 49, 1, 2027025, 4098240, 2924172, 1038016, 208054, 24640, 1708, 64, 1, 34459425, 71697105, 53809164, 20570444, 4574934, 626934, 53676, 2796, 81, 1
OFFSET
0,4
COMMENTS
Exponential Riordan array (1/sqrt(1-2*x), log(1/sqrt(1-2*x))). - Paul Barry, May 09 2011
The o.g.f.s D(d, x) of the column sequences, for d, d >= 0,(d=0 for the main diagonal) are P(d, x)/(1 - x)^(2*d+1), with the row polynomial P(d, x) = Sum_{m=0..d} A288875(d, m)*x^m. See A288875 for details. - Wolfdieter Lang, Jul 21 2017
LINKS
Priyavrat Deshpande, Krishna Menon, and Anurag Singh, A combinatorial statistic for labeled threshold graphs, arXiv:2103.03865 [math.CO], 2021.
Thomas Godland and Zakhar Kabluchko, Projections and angle sums of permutohedra and other polytopes, arXiv:2009.04186 [math.MG], 2020.
Thomas Godland and Zakhar Kabluchko, Projections and Angle Sums of Belt Polytopes and Permutohedra, Res. Math. (2023) Vol. 78, Art. No. 140.
Z. Kabluchko, V. Vysotsky, and D. Zaporozhets, Convex hulls of random walks, hyperplane arrangements, and Weyl chambers, arXiv preprint arXiv:1510.04073 [math.PR], 2015.
Wolfdieter Lang, On Generating functions of Diagonals Sequences of Sheffer and Riordan Number Triangles, arXiv:1708.01421 [math.NT], August 2017.
Bruce E. Sagan and Joshua P. Swanson, q-Stirling numbers in type B, arXiv:2205.14078 [math.CO], 2022.
FORMULA
Triangle T(n, k), read by rows, given by [1, 2, 3, 4, 5, 6, 7, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 20 2005
T(n, k) = Sum_{i=k..n} (-2)^(n-i) * binomial(i, k) * s(n, i) where s(n, k) are signed Stirling numbers of the first kind. - Francis Woodhouse (fwoodhouse(AT)gmail.com), Nov 18 2005
G.f. of row polynomials in y: 1/(1-(x+x*y)/(1-2*x/(1-(3*x+x*y)/(1-4*x/(1-(5*x+x*y)/(1-6*x*y/(1-... (continued fraction). - Paul Barry, Feb 07 2009
T(n, m) = (2*n-1)*T(n-1,m) + T(n-1,m-1) with T(n, 0) = (2*n-1)!! and T(n, n) = 1. - Johannes W. Meijer, Jun 08 2009
From Wolfdieter Lang, May 09 2017: (Start)
E.g.f. of row polynomials in y: (1/sqrt(1-2*x))*exp(-y*log(sqrt(1-2*x))) = exp(-(1+y)*log(sqrt(1-2*x))) = 1/sqrt(1-2*x)^(1+y).
E.g.f. of column m sequence: (1/sqrt(1-2*x))* (-log(sqrt(1-2*x)))^m/m!. For the special Sheffer, also known as exponential Riordan array, see a comment above. (End)
Boas-Buck type recurrence for column sequence k: T(n, k) = (n!/(n - k)) * Sum_{p=k..n-1} 2^(n-1-p)*(1 + 2*k*beta(n-1-p))*T(p, k)/p!, for n > k >= 0, with input T(k, k) = 1, and beta(k) = A002208(k+1)/A002209(k+1). See a comment and references in A286718. - Wolfdieter Lang, Aug 09 2017
EXAMPLE
G.f. for n = 4: (x + 1)*(x + 3)*(x + 5)*(x + 7) = 105 + 176*x + 86*x^2 + 16*x^3 + x^4.
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9
0: 1
1: 1 1
2: 3 4 1
3: 15 23 9 1
4: 105 176 86 16 1
5: 945 1689 950 230 25 1
6: 10395 19524 12139 3480 505 36 1
7: 135135 264207 177331 57379 10045 973 49 1
8: 2027025 4098240 2924172 1038016 208054 24640 1708 64 1
9: 34459425 71697105 53809164 20570444 4574934 626934 53676 2796 81 1
...
row n = 10: 654729075 1396704420 1094071221 444647600 107494190 16486680 1646778 106800 4335 100 1.
... reformatted and extended. - Wolfdieter Lang, May 09 2017
O.g.f.s of diagonals d >= 0: D(2, x) = (3 + 8*x + x^2)/(1 - x)^5 generating [3, 23, 86, ...] = A024196(n+1), from the row d=2 entries of A288875 [3, 8, 1]. - Wolfdieter Lang, Jul 21 2017
Boas-Buck recurrence for column k=2 and n=4: T(4, 2) = (4!/2)*(2*(1+4*(5/12))*T(2,2)/2! + 1*(1 + 4*(1/2))*T(3,2)/3!) = (4!/2)*(8/3*1 + 3*9/3!) = 86. - Wolfdieter Lang, Aug 11 2017
MAPLE
nmax:=8; for n from 0 to nmax do a(n, 0) := doublefactorial(2*n-1) od: for n from 0 to nmax do a(n, n) := 1 od: for n from 2 to nmax do for m from 1 to n-1 do a(n, m) := (2*n-1)*a(n-1, m) + a(n-1, m-1) od; od: seq(seq(a(n, m), m=0..n), n=0..nmax); # Johannes W. Meijer, Jun 08 2009, revised Nov 25 2012
MATHEMATICA
T[n_, k_] := Sum[(-2)^(n-i) Binomial[i, k] StirlingS1[n, i], {i, k, n}] (* Woodhouse *)
Join[{1}, Flatten[Table[CoefficientList[Expand[Times@@Table[x+i, {i, 1, 2n+1, 2}]], x], {n, 0, 10}]]] (* Harvey P. Dale, Jan 29 2013 *)
CROSSREFS
A039757 is signed version.
Row sums: A000165.
Diagonals: A000012, A000290(n+1), A024196(n+1), A024197(n+1), A024198(n+1).
A161198 is a scaled triangle version and A109692 is a transposed triangle version.
Central terms: A293318.
Cf. A286718, A002208(n+1)/A002209(n+1).
KEYWORD
tabl,nonn,easy,nice
AUTHOR
STATUS
approved
Denominators of logarithmic numbers (also of Gregory coefficients G(n)).
(Formerly M2017 N0797)
+10
25
1, 2, 12, 24, 720, 160, 60480, 24192, 3628800, 1036800, 479001600, 788480, 2615348736000, 475517952000, 31384184832000, 689762304000, 32011868528640000, 15613165568, 786014494949376000, 109285437800448000
OFFSET
-1,2
COMMENTS
Denominator of the determinant of the (n+1) X (n+1) matrix with 1's along the superdiagonal, (1/2)'s along the main diagonal, (1/3)'s along the subdiagonal, etc., and 0's everywhere else. - John M. Campbell, Dec 01 2011
REFERENCES
E. Isaacson and H. Bishop, Analysis of Numerical Methods, ISBN 0 471 42865 5, 1966, John Wiley and Sons, pp. 318-319. - Rudi Huysmans (rudi_huysmans(AT)hotmail.com), Apr 10 2000
Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 266.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Ibrahim M. Alabdulmohsin, "The Language of Finite Differences", in Summability Calculus: A Comprehensive Theory of Fractional Finite Sums, Springer, Cham, pp. 133-149.
Ibrahim M. Alabdulmohsin, Summability Calculus, arXiv:1209.5739v1 [math.CA], 2012.
Iaroslav V. Blagouchine, A theorem for the closed-form evaluation of the first generalized Stieltjes constant at rational arguments and some related summations, Journal of Number Theory (Elsevier), vol. 148, pp. 537-592 and vol. 151, pp. 276-277, 2015. arXiv version, arXiv:1401.3724 [math.NT], 2014.
Iaroslav V. Blagouchine, Expansions of generalized Euler's constants into the series of polynomials in 1/pi^2 and into the formal enveloping series with rational coefficients only, Journal of Number Theory (Elsevier), vol. 158, pp. 365-396, 2016. arXiv version, arXiv:1501.00740 [math.NT], 2015.
Iaroslav V. Blagouchine, Two series expansions for the logarithm of the gamma function involving Stirling numbers and containing only rational coefficients for certain arguments related to 1/pi, Journal of Mathematical Analysis and Applications (Elsevier), 2016. arXiv version, arXiv:1408.3902 [math.NT], 2014-2016.
Iaroslav V. Blagouchine, Three notes on Ser's and Hasse's representation for the zeta-functions, Integers (2018) 18A, Article #A3.
Iaroslav V. Blagouchine and Marc-Antoine Coppo, A note on some constants related to the zeta-function and their relationship with the Gregory coefficients, arXiv:1703.08601 [math.NT], 2017.
M. Coffey and J. Sondow, Rebuttal of Kowalenko's paper as concerns the irrationality of Euler's constant, Acta Appl. Math., 121 (2012), 1-3.
J. C. Kluyver, Euler's constant and natural numbers, Proc. K. Ned. Akad. Wet., 27(1-2) (1924), 142-144.
A. N. Lowan and H. Salzer, Table of coefficients in numerical integration formulas, J. Math. Phys., 22 (1943), 49-50.
A. N. Lowan and H. Salzer, Table of coefficients in numerical integration formulas, J. Math. Phys. Mass. Inst. Tech. 22 (1943), 49-50.[Annotated scanned copy]
Gergő Nemes, An Asymptotic Expansion for the Bernoulli Numbers of the Second Kind, J. Int. Seq. 14 (2011) # 11.4.8
G. M. Phillips, Gregory's method for numerical integration, Amer. Math. Monthly, 79 (1972), 270-274.
H. E. Salzer, Table of coefficients for repeated integration with differences, Phil. Mag., 38 (1947), 331-336.
H. E. Salzer, Table of coefficients for repeated integration with differences, Phil. Mag., 38 (1947), 331-336. [Annotated scanned copy]
Raphael Schumacher, Rapidly Convergent Summation Formulas involving Stirling Series, arXiv preprint arXiv:1602.00336, 2016
P. C. Stamper, Table of Gregory coefficients, Math. Comp., 20 (1966), 465.
Eric Weisstein's World of Mathematics, Logarithmic Number.
Ming Wu and Hao Pan, Sums of products of Bernoulli numbers of the second kind, Fib. Quart., 45 (2007), 146-150.
FORMULA
1/log(1+x) = Sum_{n>=-1} (A002206(n)/a(n)) * x^n.
A002206(n)/A002207(n) = (1/n!) * Sum_{j=1..n+1} Bernoulli(j)/j * S_1(n, j-1), where S_1(n,k) is the Stirling number of the first kind. - Barbara Margolius (b.margolius(AT)csuohio.edu), Jan 21 2002
G(0) = 0, G(n) = Sum_{i=1..n} (-1)^(i+1)*G(n-i)/(i+1) + (-1)^(n+1)*n/(2*(n+1)*(n+2)).
A002206(n)/A002207(n) = (1/(n+1)!)*Sum_{k=0..n+1} Stirling1(n+1,k)/(k+1). - Vladimir Kruchinin, Sep 23 2012
G(n) = (1/(n+1)!)*Integral_{x=0..1} x*(x-n)_n dx, where (a)_n is the Pochhammer symbol. - Vladimir Reshetnikov, Oct 22 2015
a(n) = denominator(f(n+1)), where f(0) = 1, f(n) = Sum_{k=0..n-1} (-1)^(n-k+1) * f(k) / (n-k+1). - Daniel Suteu, Nov 15 2018
EXAMPLE
Logarithmic numbers are 1, 1/2, -1/12, 1/24, -19/720, 3/160, -863/60480, 275/24192, -33953/3628800, 8183/1036800, -3250433/479001600, 4671/788480, -13695779093/2615348736000, 2224234463/475517952000, ... = A002206/A002207
MAPLE
series(1/log(1+x), x, 25);
with(combinat, stirling1):seq(denom(1/i!*sum(bernoulli(j)/(j)*stirling1(i, j-1), j=1..i+1)), i=1..24);
MATHEMATICA
Table[Denominator[Det[Array[Sum[KroneckerDelta[#1, #2+q]*1/(q+2)^1, {q, -1, n+1}] &, {n+1, n+1}]]], {n, 0, 20}] (* John M. Campbell, Dec 01 2011 *)
a[n_] := Denominator[n!^-1*Sum[BernoulliB[j]/j*StirlingS1[n, j-1], {j, 1, n+1}]]; a[-1] = 1; Table[a[n], {n, -1, 18}] (* Jean-François Alcover, May 16 2012, after Maple *)
Denominator@Table[Integrate[x Pochhammer[x - n, n], {x, 0, 1}]/(n + 1)!, {n, -1, 20}] (* Vladimir Reshetnikov, Oct 22 2015 *)
Denominator@CoefficientList[x/Log[1+x] + O[x]^20, x] (* Oliver Seipel, Jul 06 2024 *)
PROG
(PARI) a(n) = denominator(sum(k=0, n+1, stirling(n+1, k, 1)/((n+1)!*(k+1)))); \\ Michel Marcus, Mar 20 2018
(Python)
from math import factorial
from fractions import Fraction
from sympy.functions.combinatorial.numbers import stirling
def A002207(n): return (sum(Fraction(stirling(n+1, k, kind=1, signed=True), k+1) for k in range(n+2))/factorial(n+1)).denominator # Chai Wah Wu, Feb 12 2023
(SageMath)
from functools import cache
@cache
def h(n):
return (-sum((-1)**k * h(n - k) / (k + 1) for k in range(1, n + 1))
+ (-1)**n * n / (2*(n + 1)*(n + 2)))
def a(n): return h(n).denom() if n > 0 else n + 2
print([a(n) for n in range(-1, 19)]) # Peter Luschny, Dec 12 2023
KEYWORD
nonn,frac,nice,changed
STATUS
approved
Denominators of Cauchy numbers of second type (= Bernoulli numbers B_n^{(n)}).
(Formerly M1559 N0608)
+10
23
1, 2, 6, 4, 30, 12, 84, 24, 90, 20, 132, 24, 5460, 840, 360, 16, 1530, 180, 7980, 840, 13860, 440, 1656, 720, 81900, 6552, 216, 112, 3480, 240, 114576, 7392, 117810, 2380, 1260, 72, 3838380, 207480, 32760, 560, 568260, 27720, 238392, 55440, 869400, 2576, 236880
OFFSET
0,2
COMMENTS
The numerators are given in A002657.
These coefficients (with alternating signs) are also known as the Nørlund [or Norlund, Noerlund or Nörlund] numbers.
A simple series with the signless Cauchy numbers of second type C2(n) leads to Euler's constant: gamma = 1 - Sum_{n >=1} C2(n)/(n*(n+1)!) = 1 - 1/4 - 5/72 - 1/32 - 251/14400 - 19/1728 - 19087/2540160 - ..., see references [Blagouchine] below, as well as A075266 and A262235. - Iaroslav V. Blagouchine, Sep 15 2015
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 294.
L. M. Milne-Thompson, Calculus of Finite Differences, 1951, p. 136.
N. E. Nørlund, Vorlesungen über Differenzenrechnung, Springer-Verlag, Berlin, 1924.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Ibrahim M. Alabdulmohsin, The Language of Finite Differences, in Summability Calculus: A Comprehensive Theory of Fractional Finite Sums, Springer, Cham, pp 133-149.
Iaroslav V. Blagouchine, Two series expansions for the logarithm of the gamma function involving Stirling numbers and containing only rational coefficients for certain arguments related to 1/pi, Journal of Mathematical Analysis and Applications (Elsevier), 2016. arXiv version, arXiv:1408.3902 [math.NT], 2014-2016.
Iaroslav V. Blagouchine, Expansions of generalized Euler's constants into the series of polynomials in 1/pi^2 and into the formal enveloping series with rational coefficients only. Journal of Number Theory (Elsevier), vol. 158, pp. 365-396, 2016. arXiv version, arXiv:1501.00740 [math.NT], 2015.
Iaroslav V. Blagouchine, Three notes on Ser's and Hasse's representation for the zeta-functions, Integers (2018) 18A, Article #A3.
C. H. Karlson & N. J. A. Sloane, Correspondence, 1974
Guodong Liu, Some computational formulas for Norlund numbers, Fib. Quart., 45 (2007), 133-137.
Guo-Dong Liu, H. M. Srivastava, Hai-Quing Wang, Some Formulas for a Family of Numbers Analogous to the Higher-Order Bernoulli Numbers, J. Int. Seq. 17 (2014) # 14.4.6.
Rui-Li Liu and Feng-Zhen Zhao, Log-concavity of two sequences related to Cauchy numbers of two kinds, Online Journal of Analytic Combinatorics, Issue 14 (2019), #09.
Donatella Merlini, Renzo Sprugnoli and M. Cecilia Verri, The Cauchy numbers, Discrete Math. 306 (2006), no. 16, 1906-1920.
L. M. Milne-Thompson, Calculus of Finite Differences, 1951. [Annotated scan of pages 135, 136 only]
N. E. Nørlund, Vorlesungen ueber Differenzenrechnung Springer 1924, p. 461.
N. E. Nörlund, Vorlesungen über Differenzenrechnung, Springer-Verlag, Berlin, 1924; page 461 [Annotated scanned copy of pages 144-151 and 456-463]
Feng-Zhen Zhao, Sums of products of Cauchy numbers, Discrete Math., 309 (2009), 3830-3842.
FORMULA
Denominator of integral of x(x+1)...(x+n-1) from 0 to 1.
E.g.f.: -x/((1-x)*log(1-x)). - Corrected by Iaroslav V. Blagouchine, May 07 2016.
Denominator of Sum_{k=0..n} (-1)^k A008275(n,k)/(k+1). - Peter Luschny, Apr 28 2009
a(n) = A091137(n)/n!. - Paul Curtz, Nov 27 2008
a(n) = denominator(n!*v(n)), where v(n) = 1 - Sum_{i=0..n-1} v(i)/(n-i+1), v(0)=1. - Vladimir Kruchinin, Aug 28 2013
EXAMPLE
1, 1/2, 5/6, 9/4, 251/30, 475/12, 19087/84, 36799/24, 1070017/90, ...
MAPLE
A002790 := proc(n)
denom(add((-1)^k*stirling1(n, k)/(k+1), k=0..n)) ;
end proc: # Peter Luschny, Apr 28 2009
MATHEMATICA
Table[ Denominator[ NorlundB[n, n]], {n, 0, 60}] (* Vladimir Joseph Stephan Orlovsky, Dec 30 2010 *)
PROG
(Maxima)
v(n):=if n=0 then 1 else 1-sum(v(i)/(n-i+1), i, 0, n-1);
makelist(denom(n!*v(n)), n, 0, 10); /* Vladimir Kruchinin, Aug 28 2013 */
(Magma) m:=60; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(-x/((1-x)*Log(1-x)) )); [Denominator(Factorial(n-1)*b[n]): n in [1..m-1]]; // G. C. Greubel, Oct 28 2018
KEYWORD
nonn,frac,nice,easy
STATUS
approved

Search completed in 0.032 seconds