Displaying 1-10 of 21 results found.
REFERENCES
Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 529.
Triangle of Stirling numbers of first kind, s(n,k), n >= 0, 0 <= k <= n.
+10
214
1, 0, 1, 0, -1, 1, 0, 2, -3, 1, 0, -6, 11, -6, 1, 0, 24, -50, 35, -10, 1, 0, -120, 274, -225, 85, -15, 1, 0, 720, -1764, 1624, -735, 175, -21, 1, 0, -5040, 13068, -13132, 6769, -1960, 322, -28, 1, 0, 40320, -109584, 118124, -67284, 22449, -4536, 546, -36, 1, 0, -362880, 1026576, -1172700, 723680, -269325, 63273, -9450, 870, -45, 1
COMMENTS
The unsigned numbers are also called Stirling cycle numbers: |s(n,k)| = number of permutations of n objects with exactly k cycles.
Also the triangle gives coefficients T(n,k) of x^k in the expansion of C(x,n) = (a(k)*x^k)/n!. - Mokhtar Mohamed, Dec 04 2012
This is the Sheffer triangle of Jabotinsky type (1, log(1 + x)). See the e.g.f. of the triangle below.
This is the inverse Sheffer triangle of the Stirling2 Sheffer triangle A008275.
The a-sequence of this Sheffer triangle (see a W. Lang link in A006232)
is from the e.g.f. A(x) = x/(exp(x) -1) a(n) = Bernoulli(n) = A027641(n)/ A027642(n), for n >= 0. The z-sequence vanishes.
The Boas-Buck sequence for the recurrences of columns has o.g.f. B(x) = Sum_{n>=0} b(n)*x^n = 1/((1 + x)*log(1 + x)) - 1/x. b(n) = (-1)^(n+1)* A002208(n+1)/ A002209(n+1), b = {-1/2, 5/12, -3/8, 251/720, -95/288, 19087/60480,...}. For the Boas-Buck recurrence of Riordan and Sheffer triangles see the Aug 10 2017 remark in A046521, adapted to the Sheffer case, also for two references. See the recurrence and example below. - Wolfdieter Lang, Nov 14 2018
Let G(n,m,k) be the number of simple labeled graphs on [n] with m edges and k components. Then T(n,k) = Sum (-1)^m*G(n,m,k). See the Read link below. Equivalently, T(n,k) = Sum mu(0,p) where the sum is over all set partitions p of [n] containing k blocks and mu is the Moebius function in the incidence algebra associated to the set partition lattice on [n]. - Geoffrey Critzer, May 11 2024
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 833.
L. Comtet, Advanced Combinatorics, Reidel, 1974; Chapter V, also p. 310.
J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 93.
F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 226.
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 245.
J. Riordan, An Introduction to Combinatorial Analysis, p. 48.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
FORMULA
s(n, k) = A008275(n,k) for n >= 1, k = 1..n; column k = 0 is {1, repeat(0)}.
s(n, k) = s(n-1, k-1) - (n-1)*s(n-1, k), n, k >= 1; s(n, 0) = s(0, k) = 0; s(0, 0) = 1.
The unsigned numbers a(n, k)=|s(n, k)| satisfy a(n, k)=a(n-1, k-1)+(n-1)*a(n-1, k), n, k >= 1; a(n, 0) = a(0, k) = 0; a(0, 0) = 1.
Triangle (signed) = [0, -1, -1, -2, -2, -3, -3, -4, -4, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, ...]; Triangle(unsigned) = [0, 1, 1, 2, 2, 3, 3, 4, 4, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, ...]; where DELTA is Deléham's operator defined in A084938.
Sum_{k=0..n} (-m)^(n-k)*s(n, k) = A000142(n), A001147(n), A007559(n), A007696(n), ... for m = 1, 2, 3, 4, ... .- Philippe Deléham, Oct 29 2005
T(n,k) = n!*[x^k]([t^n]exp(x*log(1+t))). - Peter Luschny, Dec 30 2010, updated Jun 07 2020
Recurrence from the Sheffer a-sequence (see a comment above): s(n, k) = (n/k)*Sum_{j=0..n-k} binomial(k-1+j, j)*Bernoulli(j)*s(n-1, k-1+j), for n >= 1 and k >= 1, with s(n, 0) = 0 if n >= 1, and s(0,0) = 1.
Boas-Buck type recurrence for column k: s(n, k) = (n!*k/(n - k))*Sum_{j=k..n-1} b(n-1-j)*s(j, k)/j!, for n >= 1 and k = 0..n-1, with input s(n, n) = 1. For sequence b see the Boas-Buck comment above. (End)
EXAMPLE
Triangle begins:
n\k 0 1 2 3 4 5 6 7 8 9 ...
0 1
1 0 1
2 0 -1 1
3 0 2 -3 1
4 0 -6 11 -6 1
5 0 24 -50 35 -10 1
6 0 -120 274 -225 85 -15 1
7 0 720 -1764 1624 -735 175 -21 1
8 0 -5040 13068 -13132 6769 -1960 322 -28 1
9 0 40320 -109584 118124 -67284 22449 -4536 546 -36 1
------------------------------------------------------------------
Recurrence: s(5,2)= s(4, 1) - 4*s(4, 2) = -6 - 4*11 = -50.
Recurrence from the a- and z-sequences: s(6, 3) = 2*(1*1*(-50) + 3*(-1/2)*35 + 6*(1/6)*(-10) + 10*0*1) = -225.
Boas-Buck recurrence for column k = 3, with b = {-1/2, 5/12, -3/8, ...}:
s(6, 3) = 6!*((-3/8)*1/3! + (5/12)*(-6)/4! + (-1/2)*35/5!) = -225. (End)
MAPLE
seq(print(seq(coeff(expand(k!*binomial(x, k)), x, i), i=0..k)), k=0..9); # Peter Luschny, Jul 13 2009
A048994_row := proc(n) local k; seq(coeff(expand(pochhammer(x-n+1, n)), x, k), k=0..n) end: # Peter Luschny, Dec 30 2010
MATHEMATICA
Table[StirlingS1[n, m], {n, 0, 9}, {m, 0, n}] (* Peter Luschny, Dec 30 2010 *)
PROG
(PARI) a(n, k) = if(k<0 || k>n, 0, if(n==0, 1, (n-1)*a(n-1, k)+a(n-1, k-1)))
(PARI) trg(nn)=for (n=0, nn-1, for (k=0, n, print1(stirling(n, k, 1), ", "); ); print(); ); \\ Michel Marcus, Jan 19 2015
(Maxima) create_list(stirling1(n, k), n, 0, 12, k, 0, n); /* Emanuele Munarini, Mar 11 2011 */
(Haskell)
a048994 n k = a048994_tabl !! n !! k
a048994_row n = a048994_tabl !! n
a048994_tabl = map fst $ iterate (\(row, i) ->
(zipWith (-) ([0] ++ row) $ map (* i) (row ++ [0]), i + 1)) ([1], 0)
CROSSREFS
See especially A008275 which is the main entry for this triangle. A132393 is an unsigned version, and A008276 is another version.
A000142(n) = Sum_{k=0..n} |s(n, k)| for n >= 0.
Triangle of unsigned Stirling numbers of the first kind (see A048994), read by rows, T(n,k) for 0 <= k <= n.
+10
121
1, 0, 1, 0, 1, 1, 0, 2, 3, 1, 0, 6, 11, 6, 1, 0, 24, 50, 35, 10, 1, 0, 120, 274, 225, 85, 15, 1, 0, 720, 1764, 1624, 735, 175, 21, 1, 0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1, 0, 40320, 109584, 118124, 67284, 22449, 4536, 546, 36, 1, 0, 362880, 1026576, 1172700, 723680, 269325, 63273, 9450, 870, 45, 1
COMMENTS
Another name: Triangle of signless Stirling numbers of the first kind.
Triangle T(n,k), 0<=k<=n, read by rows given by [0,1,1,2,2,3,3,4,4,5,5,...] DELTA [1,0,1,0,1,0,1,0,1,...] where DELTA is the operator defined in A084938.
Exponential Riordan array [1/(1-x), log(1/(1-x))]. - Ralf Stephan, Feb 07 2014
Also the Bell transform of the factorial numbers ( A000142). For the definition of the Bell transform see A264428 and for cross-references A265606. - Peter Luschny, Dec 31 2015
This is the lower triagonal Sheffer matrix of the associated or Jabotinsky type |S1| = (1, -log(1-x)) (see the W. Lang link under A006232 for the notation and references). This implies the e.g.f.s given below. |S1| is the transition matrix from the monomial basis {x^n} to the rising factorial basis {risefac(x,n)}, n >= 0. - Wolfdieter Lang, Feb 21 2017
T(n, k), for n >= k >= 1, is also the total volume of the n-k dimensional cell (polytope) built from the n-k orthogonal vectors of pairwise different lengths chosen from the set {1, 2, ..., n-1}. See the elementary symmetric function formula for T(n, k) and an example below. - Wolfdieter Lang, May 28 2017
The compositional inverse w.r.t. x of y = y(t;x) = x*(1 - t(-log(1-x)/x)) = x + t*log(1-x) is x = x(t;y) = ED(y,t) := Sum_{d>=0} D(d,t)*y^(d+1)/(d+1)!, the e.g.f. of the o.g.f.s D(d,t) = Sum_{m>=0} T(d+m, m)*t^m of the diagonal sequences of the present triangle. See the P. Bala link for a proof (there d = n-1, n >= 1, is the label for the diagonals).
This inversion gives D(d,t) = P(d, t)/(1-t)^(2*d+1), with the numerator polynomials P(d, t) = Sum_{m=0..d} A288874(d, m)*t^m. See an example below. See also the P. Bala formula in A112007. (End)
For n > 0, T(n,k) is the number of permutations of the integers from 1 to n which have k visible digits when viewed from a specific end, in the sense that a higher value hides a lower one in a subsequent position. - Ian Duff, Jul 12 2019
REFERENCES
Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 31, 187, 441, 996.
R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd. ed., Table 259, p. 259.
Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), pp. 149-150
FORMULA
T(n,k) = T(n-1,k-1)+(n-1)*T(n-1,k), n,k>=1; T(n,0)=T(0,k); T(0,0)=1.
Sum_{k=0..n} T(n,k)*x^(n-k) = A000012(n), A000142(n), A001147(n), A007559(n), A007696(n), A008548(n), A008542(n), A045754(n), A045755(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8 respectively. - Philippe Deléham, Nov 13 2007
Expand 1/(1-t)^x = Sum_{n>=0}p(x,n)*t^n/n!; then the coefficients of the p(x,n) produce the triangle. - Roger L. Bagula, Apr 18 2008
Sum_{k=0..n} T(n,k)*2^k*x^(n-k) = A000142(n+1), A000165(n), A008544(n), A001813(n), A047055(n), A047657(n), A084947(n), A084948(n), A084949(n) for x = 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - Philippe Deléham, Sep 18 2008
a(n) = Sum_{k=0..n} T(n,k)*3^k*x^(n-k) = A001710(n+2), A001147(n+1), A032031(n), A008545(n), A047056(n), A011781(n), A144739(n), A144756(n), A144758(n) for x=1,2,3,4,5,6,7,8,9,respectively. - Philippe Deléham, Sep 20 2008
Sum_{k=0..n} T(n,k)*4^k*x^(n-k) = A001715(n+3), A002866(n+1), A007559(n+1), A047053(n), A008546(n), A049308(n), A144827(n), A144828(n), A144829(n) for x=1,2,3,4,5,6,7,8,9 respectively. - Philippe Deléham, Sep 21 2008
Sum_{k=0..n} x^k*T(n,k) = x*(1+x)*(2+x)*...*(n-1+x), n>=1. - Philippe Deléham, Oct 17 2008
E.g.f. k-th column: (-log(1 - x))^k, k >= 0.
E.g.f. triangle (see the Apr 18 2008 Baluga comment): exp(-x*log(1-z)).
E.g.f. a-sequence: x/(1 - exp(-x)). See A164555/ A027642. The e.g.f. for the z-sequence is 0. (End)
The row polynomials R(n, x) = Sum_{k=0..n} T(n, k)*x^k, for n >= 0, are R(n, x) = risefac(x,n-1) := Product_{j=0..n-1} x+j, with the empty product for n=0 put to 1. See the Feb 21 2017 comment above. This implies:
T(n, k) = sigma^{(n-1)}_(n-k), for n >= k >= 1, with the elementary symmetric functions sigma^{(n-1))_m of degree m in the n-1 symbols 1, 2, ..., n-1, with binomial(n-1, m) terms. See an example below.(End)
Boas-Buck type recurrence for column sequence k: T(n, k) = (n!*k/(n - k)) * Sum_{p=k..n-1} beta(n-1-p)*T(p, k)/p!, for n > k >= 0, with input T(k, k) = 1, and beta(k) = A002208(k+1)/ A002209(k+1). See a comment and references in A286718. - Wolfdieter Lang, Aug 11 2017
T(n,k) = Sum_{j=k..n} j^(j-k)*binomial(j-1, k-1)* A354795(n,j) for n > 0. - Mélika Tebni, Mar 02 2023
n-th row polynomial: n!*Sum_{k = 0..2*n} (-1)^k*binomial(-x, k)*binomial(-x, 2*n-k) = n!*Sum_{k = 0..2*n} (-1)^k*binomial(1-x, k)*binomial(-x, 2*n-k). - Peter Bala, Mar 31 2024
EXAMPLE
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 2, 3, 1;
0, 6, 11, 6, 1;
0, 24, 50, 35, 10, 1;
0, 120, 274, 225, 85, 15, 1;
0, 720, 1764, 1624, 735, 175, 21, 1;
0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1;
...
---------------------------------------------------
Production matrix is
0, 1
0, 1, 1
0, 1, 2, 1
0, 1, 3, 3, 1
0, 1, 4, 6, 4, 1
0, 1, 5, 10, 10, 5, 1
0, 1, 6, 15, 20, 15, 6, 1
0, 1, 7, 21, 35, 35, 21, 7, 1
...
Three term recurrence: 50 = T(5, 2) = 1*6 + (5-1)*11 = 50.
Recurrence from the Sheffer a-sequence [1, 1/2, 1/6, 0, ...]: 50 = T(5, 2) = (5/2)*(binomial(1, 1)*1*6 + binomial(2, 1)*(1/2)*11 + binomial(3, 1)*(1/6)*6 + 0) = 50. The vanishing z-sequence produces the k=0 column from T(0, 0) = 1. (End)
Elementary symmetric function T(4, 2) = sigma^{(3)}_2 = 1*2 + 1*3 + 2*3 = 11. Here the cells (polytopes) are 3 rectangles with total area 11. - Wolfdieter Lang, May 28 2017
O.g.f.s of diagonals: d=2 (third diagonal) [0, 6, 50, ...] has D(2,t) = P(2, t)/(1-t)^5, with P(2, t) = 2 + t, the n = 2 row of A288874. - Wolfdieter Lang, Jul 20 2017
Boas-Buck recurrence for column k = 2 and n = 5: T(5, 2) = (5!*2/3)*((3/8)*T(2,2)/2! + (5/12)*T(3,2)/3! + (1/2)*T(4,2)/4!) = (5!*2/3)*(3/16 + (5/12)*3/3! + (1/2)*11/4!) = 50. The beta sequence begins: {1/2, 5/12, 3/8, ...}. - Wolfdieter Lang, Aug 11 2017
MAPLE
a132393_row := proc(n) local k; seq(coeff(expand(pochhammer (x, n)), x, k), k=0..n) end: # Peter Luschny, Nov 28 2010
MATHEMATICA
p[t_] = 1/(1 - t)^x; Table[ ExpandAll[(n!)SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], {n, 0, 10}]; a = Table[(n!)* CoefficientList[SeriesCoefficient[ Series[p[t], {t, 0, 30}], n], x], {n, 0, 10}]; Flatten[a] (* Roger L. Bagula, Apr 18 2008 *)
Flatten[Table[Abs[StirlingS1[n, i]], {n, 0, 10}, {i, 0, n}]] (* Harvey P. Dale, Feb 04 2014 *)
PROG
(Maxima) create_list(abs(stirling1(n, k)), n, 0, 12, k, 0, n); /* Emanuele Munarini, Mar 11 2011 */
(Haskell)
a132393 n k = a132393_tabl !! n !! k
a132393_row n = a132393_tabl !! n
a132393_tabl = map (map abs) a048994_tabl
Numerators of Cauchy numbers of first type.
(Formerly M5067)
+10
107
1, 1, -1, 1, -19, 9, -863, 1375, -33953, 57281, -3250433, 1891755, -13695779093, 24466579093, -132282840127, 240208245823, -111956703448001, 4573423873125, -30342376302478019, 56310194579604163
COMMENTS
The corresponding denominators are given in A006233.
-a(n+1), n>=0, also numerators from e.g.f. 1/x-1/log(1+x), with denominators A075178(n). |a(n+1)|, n>=0, numerators from e.g.f. 1/x+1/log(1-x) with denominators A075178(n). For formula of unsigned a(n) see A075178.
The signed rationals a(n)/ A006233(n) provide the a-sequence for the Stirling2 Sheffer matrix A048993. See the W. Lang link concerning Sheffer a- and z-sequences.
Cauchy numbers of the first type are also called Bernoulli numbers of the second kind.
Named after the French mathematician, engineer and physicist Augustin-Louis Cauchy (1789-1857). - Amiram Eldar, Jun 17 2021
REFERENCES
Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 294.
Harold Jeffreys and B. S. Jeffreys, Methods of Mathematical Physics, Cambridge, 1946, p. 259.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Donatella Merlini, Renzo Sprugnoli and M. Cecilia Verri, The Cauchy numbers, Discrete Math., Vol. 306, No. 16 (2006), pp. 1906-1920.
FORMULA
Numerator of integral of x(x-1)...(x-n+1) from 0 to 1.
E.g.f.: x/log(1+x). (Note: the numerator of the coefficient of x^n/n! is a(n) - Michael Somos, Jul 12 2014)
Sum_{k=1..n} 1/k = C + log(n) + 1/(2n) + Sum_{k=2..inf} |a(n)|/ A075178(n-1) * 1/(n*(n+1)*...*(n+k-1)) (section 0.131 in Gradshteyn and Ryzhik tables). - Ralf Stephan, Jul 12 2014
a(n) = numerator(f(n) * n!), where f(0) = 1, f(n) = Sum_{k=0..n-1} (-1)^(n-k+1) * f(k) / (n-k+1). - Daniel Suteu, Feb 23 2018
Sum_{k = 1..n} (1/k) = A001620 + log(n) + 1/(2n) - Sum_{k >= 2} abs((a(k)/ A006233(k)/k/(Product_{j = 0..k-1} (n-j)))), (see I. S. Gradsteyn, I. M. Ryzhik). - A.H.M. Smeets, Nov 14 2018
EXAMPLE
1, 1/2, -1/6, 1/4, -19/30, 9/4, -863/84, 1375/24, -33953/90, ...
MAPLE
seq(numer(add(stirling1(n, k)/(k+1), k=0..n)), n=0..20); # Peter Luschny, Apr 28 2009
MATHEMATICA
a[n_] := Numerator[ Sum[ StirlingS1[n, k]/(k + 1), {k, 0, n}]]; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Nov 03 2011, after Maple *)
a[n_] := Numerator[ Integrate[ Gamma[x+1]/Gamma[x-n+1], {x, 0, 1}]]; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Jul 29 2013 *)
a[ n_] := If[ n < 0, 0, (-1)^n Numerator @ Integrate[ Pochhammer[ -x, n], {x, 0, 1}]]; (* Michael Somos, Jul 12 2014 *)
a[ n_] := If[ n < 0, 0, Numerator [ n! SeriesCoefficient[ x / Log[ 1 + x], {x, 0, n}]]]; (* Michael Somos, Jul 12 2014 *)
Join[{1}, Array[Numerator[(1/#) Integrate[Product[(x - k), {k, 0, # - 1}], {x, 0, 1}]] &, 25]] (* Michael De Vlieger, Nov 13 2018 *)
PROG
(Sage)
f, R, C = 1, [1], [1]+[0]*(len-1)
for n in (1..len-1):
for k in range(n, 0, -1):
C[k] = -C[k-1] * k / (k + 1)
C[0] = -sum(C[k] for k in (1..n))
R.append((C[0]*f).numerator())
f *= n
return R
(PARI) for(n=0, 20, print1(numerator( sum(k=0, n, stirling(n, k, 1)/(k+1)) ), ", ")) \\ G. C. Greubel, Nov 13 2018
(Magma) [Numerator((&+[StirlingFirst(n, k)/(k+1): k in [0..n]])): n in [0..20]]; // G. C. Greubel, Nov 13 2018
(Python) # Results are abs values
from fractions import gcd
aa, n, sden = [0, 1], 1, 1
while n < 20:
j, snom, sden, a = 1, 0, (n+1)*sden, 0
while j < len(aa):
snom, j = snom+aa[j]*(sden//(j+1)), j+1
nom, den = snom, sden
print(n, nom//gcd(nom, den))
aa, j = aa+[-aa[j-1]], j-1
while j > 0:
aa[j], j = n*aa[j]-aa[j-1], j-1
(Python)
from fractions import Fraction
from sympy.functions.combinatorial.numbers import stirling
def A006232(n): return sum(Fraction(stirling(n, k, kind=1, signed=True), k+1) for k in range(n+1)).numerator # Chai Wah Wu, Jul 09 2023
Denominators of Cauchy numbers of first type.
(Formerly M1558)
+10
37
1, 2, 6, 4, 30, 4, 84, 24, 90, 20, 132, 8, 5460, 840, 360, 48, 1530, 4, 1596, 168, 1980, 1320, 8280, 80, 81900, 6552, 1512, 112, 3480, 80, 114576, 7392, 117810, 7140, 1260, 8, 3838380, 5928, 936, 48, 81180, 440, 1191960, 55440, 869400, 38640, 236880, 224
COMMENTS
The corresponding numerators are given in A006232.
The signed rationals A006232(n)/a(n) provide the a-sequence for the Stirling2 Sheffer matrix A048993. See the W. Lang link concerning Sheffer a- and z-sequences.
Cauchy numbers of the first type are also called Bernoulli numbers of the second kind.
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 294.
H. Jeffreys and B. S. Jeffreys, Methods of Mathematical Physics, Cambridge, 1946, p. 259.
L. Jolley, Summation of Series, Chapman and Hall, London, 1925, pp. 14-15 (formula 70).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Donatella Merlini, Renzo Sprugnoli and M. Cecilia Verri, The Cauchy numbers, Discrete Math. 306 (2006), no. 16, 1906-1920.
FORMULA
Denominator of integral of x(x-1)...(x-n+1) from 0 to 1.
E.g.f.: x/log(1+x).
a(n) = denominator(f(n) * n!), where f(0) = 1, f(n) = Sum_{k=0..n-1} (-1)^(n-k+1) * f(k) / (n-k+1). - Daniel Suteu, Feb 23 2018
Sum_{k = 1..n} (1/k) = A001620 + log(n) + 1/(2*n) - Sum_{k >= 2} abs(( A006232(k)/a(k)/k/(Product_{j = 0..k-1} (n-j)))), (see I. S. Gradsteyn, I. M. Ryzhik). - A.H.M. Smeets, Nov 14 2018
EXAMPLE
1, 1/2, -1/6, 1/4, -19/30, 9/4, -863/84, 1375/24, -33953/90,...
MAPLE
seq(denom(add(stirling1(n, k)/(k+1), k=0..n)), n=0..12); # Peter Luschny, Apr 28 2009
MATHEMATICA
With[{nn=50}, Denominator[CoefficientList[Series[x/Log[1+x], {x, 0, nn}], x] Range[0, nn]!]] (* Harvey P. Dale, Oct 28 2011 *)
Join[{1}, Array[Abs@Denominator[ Integrate[Product[(x - k), {k, 0, # - 1}], {x, 0, 1}]] &, 50]] (* Michael De Vlieger, Nov 13 2018 *)
PROG
(PARI) for(n=0, 50, print1(denominator( sum(k=0, n, stirling(n, k, 1)/(k+1)) ), ", ")) \\ G. C. Greubel, Nov 13 2018
(Magma) [Denominator((&+[StirlingFirst(n, k)/(k+1): k in [0..n]])): n in [0..50]]; // G. C. Greubel, Nov 13 2018
(Sage)
f, R, C = 1, [1], [1]+[0]*(len-1)
for n in (1..len-1):
for k in range(n, 0, -1):
C[k] = -C[k-1] * k / (k + 1)
C[0] = -sum(C[k] for k in (1..n))
R.append((C[0]*f).denominator())
f *= n+1
return R
(Python) # Results are abs values
from fractions import gcd
aa, n, sden = [0, 1], 1, 1
print(0, 1)
while n < 20:
j, snom, sden, a = 1, 0, (n+1)*sden, 0
while j < len(aa):
snom, j = snom+aa[j]*(sden//(j+1)), j+1
nom, den = snom, sden
print(n, den//gcd(nom, den))
aa, j = aa+[-aa[j-1]], j-1
while j > 0:
aa[j], j = n*aa[j]-aa[j-1], j-1
(Python)
from fractions import Fraction
from sympy.functions.combinatorial.numbers import stirling
def A006233(n): return sum(Fraction(stirling(n, k, kind=1, signed=True), k+1) for k in range(n+1)).denominator # Chai Wah Wu, Jul 09 2023
KEYWORD
nonn,frac,nice,easy,changed
Numerators of logarithmic numbers (also of Gregory coefficients G(n)).
(Formerly M5066 N2194)
+10
34
1, 1, -1, 1, -19, 3, -863, 275, -33953, 8183, -3250433, 4671, -13695779093, 2224234463, -132282840127, 2639651053, -111956703448001, 50188465, -2334028946344463, 301124035185049, -12365722323469980029
COMMENTS
For n>0 G(n) = (-1)^(n+1) * Integral_{x=0..infinity} 1/((log^2(x)+Pi^2)*(x+1)^n). G(1)=1/2, and for n>1, G(n) = (-1)^(n+1)/(n+1) - Sum_{k=1..n-1} (-1)^k*G(n-k)/(k+1). Euler's constant is given by gamma = Sum_{n>=1} (-1)^(n+1)*G(n)/n. - Groux Roland, Jan 14 2009
The above series for Euler's constant was discovered circa 1780-1790 by the Italian mathematicians Gregorio Fontana (1735-1803) and Lorenzo Mascheroni (1750-1800), and was subsequently rediscovered several times (in particular, by Ernst Schröder in 1879, Niels E. Nørlund in 1923, Jan C. Kluyver in 1924, Charles Jordan in 1929, Kenter in 1999, and Victor Kowalenko in 2008). For more details, see references [Blagouchine, 2015] and [Blagouchine, 2016] below. - Iaroslav V. Blagouchine, Sep 16 2015
Gregory's coefficients {G(n)}n>=0 = {1,1/2,-1/12,1/24,-19/720,3/160,...} occur in Gregory's quadrature formula for numerical integration. The integral I = Integral_{x = m..n} f(x) dx may be approximated by the sum S = 1/2*f(m) + f(m+1) + ... + f(n-1) + 1/2*f(n). Gregory's formula for the difference is I - S = Sum_{k>=2} G(k)*{delta^(k-1)(f(n)) - delta^(k-1)(f(m))}, where delta is the difference operator delta(f(x)) = f(x+1) - f(x).
Gregory's formula is the discrete analog of the Euler-Maclaurin summation formula, with finite differences replacing derivatives and the Gregory coefficients replacing the Bernoulli numbers.
Alabdulmohsin, Section 7.3.3, gives several identities involving the Gregory coefficients including
Sum_{n >= 2} |G(n)|/(n-1) = (1/2)*(log(2*Pi) - 1 - euler_gamma) and
Sum_{n >= 1} |G(n)|/(n+1) = 1 - log(2). (End)
More series with Gregory coefficients, accurate bounds for them, their full asymptotics at large index, as well as many historical details related to them, are given in the articles by Blagouchine (see refs. below). - Iaroslav V. Blagouchine, May 06 2016
Named after the Scottish mathematician and astronomer James Gregory (1638-1675). - Amiram Eldar, Jun 16 2021
REFERENCES
Eugene Isaacson and Herbert Bishop Keller, Analysis of Numerical Methods, ISBN 0 471 42865 5, 1966, John Wiley and Sons, pp. 318-319. - Rudi Huysmans (rudi_huysmans(AT)hotmail.com), Apr 10 2000
Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 266.
Murray S. Klamkin, ed., Problems in Applied Mathematics: Selections from SIAM Review, SIAM, 1990, see page 101 [Problem 87-6].
Arnold N. Lowan and Herbert E. Salzer, Table of coefficients in numerical integration formulas, J. Math. Phys. Mass. Inst. Tech. 22 (1943), 49-50.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
G(0)=0, G(n) = Sum_{i=1..n} (-1)^(i+1)*G(n-i)/(i+1)+(-1)^(n+1)*n/((2*(n+1)*(n+2)).
a(n)/ A002207(n) = (1/n!) * Sum_{j=1..n+1} bernoulli(j)/j * S_1(n,j-1), where S_1(n,k) is the Stirling number of the first kind. - Barbara Margolius (b.margolius(AT)csuohio.edu), Jan 21 2002
G(n) = (Integral_{x=0..1} x*(x-n)_n)/(n+1)!, where (a)_n is the Pochhammer symbol. - Vladimir Reshetnikov, Oct 22 2015
a(n) = numerator(f(n+1)), where f(0) = 1, f(n) = Sum_{k=0..n-1} (-1)^(n-k+1) * f(k) / (n-k+1). - Daniel Suteu, Nov 15 2018
EXAMPLE
Logarithmic numbers are 1, 1/2, -1/12, 1/24, -19/720, 3/160, -863/60480, 275/24192, -33953/3628800, 8183/1036800, -3250433/479001600, 4671/788480, -13695779093/2615348736000, 2224234463/475517952000, ... = A002206/ A002207
MAPLE
series(1/log(1+x), x, 25);
with(combinat, stirling1):seq(numer(1/i!*sum(bernoulli(j)/(j)*stirling1(i, j-1), j=1..i+1)), i=1..24);
MATHEMATICA
Numerator@Table[Integrate[x Pochhammer[x - n, n], {x, 0, 1}]/(n + 1)!, {n, -1, 20}] (* Vladimir Reshetnikov, Oct 22 2015 *)
Numerator@CoefficientList[x/Log[1+x] + O[x]^21, x] (* Oliver Seipel, Jul 06 2024 *)
PROG
(Maxima) a(n):=sum(stirling1(n+1, k)/((n+1)!*(k+1)), k, 0, n+1);
(Maxima)
a(n):=if n=-1 then 1 else if n=0 then 1/2 else 1/n!*sum(((-1)^(k+1)*stirling2(n+k+1, k)*binomial(2*n+1, n+k))/((n+k+1)*(n+k)), k, 0, n+1); /* Vladimir Kruchinin, Apr 05 2016 */
(PARI) a(n) = numerator(sum(k=0, n+1, stirling(n+1, k, 1)/((n+1)!*(k+1)))); \\ Michel Marcus, Mar 20 2018
(Python)
from math import factorial
from fractions import Fraction
from sympy.functions.combinatorial.numbers import stirling
def A002206(n): return (sum(Fraction(stirling(n+1, k, kind=1, signed=True), k+1) for k in range(n+2))/factorial(n+1)).numerator # Chai Wah Wu, Feb 12 2023
(SageMath)
from functools import cache
@cache
def h(n):
return (-sum((-1)**k * h(n - k) / (k + 1) for k in range(1, n + 1))
+ (-1)**n * n / (2*(n + 1)*(n + 2)))
def a(n): return h(n).numer() if n > 0 else 1
print([a(n) for n in range(-1, 20)]) # Peter Luschny, Dec 12 2023
Numerators of Cauchy numbers of second type (= Bernoulli numbers B_n^{(n)}).
(Formerly M3790 N1545)
+10
27
1, 1, 5, 9, 251, 475, 19087, 36799, 1070017, 2082753, 134211265, 262747265, 703604254357, 1382741929621, 8164168737599, 5362709743125, 8092989203533249, 15980174332775873, 12600467236042756559
COMMENTS
These coefficients (with alternating signs) are also known as the Nørlund [or Norlund, Noerlund or Nörlund] numbers. [After the Danish mathematician Niels Erik Nørlund (1885-1981). - Amiram Eldar, Jun 17 2021]
The denominators are found in A002790. The alternating rational sequence ((-1)^n)*a(n)/ A002790(n)is the z-sequence for the Stirling2 triangle A008277(n+1,k+1), n>=k>=0. This is the Sheffer (exp(x),exp(x)-1) triangle. See the W. Lang link under A006232 for Sheffer a- and z-sequences with references, and the conversion to S. Roman's notation. The a-sequence is A006232(n)/ A006233(n). - Wolfdieter Lang, Oct 06 2011 [This is the Sheffer triangle A007318* A048993. Added Jun 20 2017]
A simple series with the signless Cauchy numbers of second type C2(n) leads to Euler's constant: gamma = 1 - Sum_{n >=1} C2(n)/(n*(n+1)!) = 1 - 1/4 - 5/72 - 1/32 - 251/14400 - 19/1728 - 19087/2540160 - ..., see references [Blagouchine] below, as well as A075266 and A262235. - Iaroslav V. Blagouchine, Sep 15 2015
REFERENCES
Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 294.
P. Curtz, Intégration numérique des systèmes différentiels à conditions initiales, Centre de Calcul Scientifique de l'Armement, Arcueil, 1969.
Louis Melville Milne-Thompson, Calculus of Finite Differences, 1951, p. 136.
N. E. Nørlund, Vorlesungen über Differenzenrechnung, Springer-Verlag, Berlin, 1924.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Ibrahim M. Alabdulmohsin, The Language of Finite Differences, in Summability Calculus: A Comprehensive Theory of Fractional Finite Sums, Springer, Cham, 2018, pp. 133-149.
Donatella Merlini, Renzo Sprugnoli and M. Cecilia Verri, The Cauchy numbers, Discrete Math., Vol. 306, No. 16 (2006), pp. 1906-1920.
FORMULA
Numerator of integral of x(x+1)...(x+n-1) from 0 to 1.
a(n) = numerator(n!*v(n)), where v(n) = 1 - Sum_{i=0..n-1} v(i)/(n-i+1), v(0)=1. - Vladimir Kruchinin, Aug 28 2013
EXAMPLE
1, 1/2, 5/6, 9/4, 251/30, 475/12, 19087/84, 36799/24, 1070017/90, ...
MAPLE
seq(numer(add((-1)^(n-k)*Stirling1(n, k)/(k+1), k=0..n)), n=0..10); # Peter Luschny, Apr 28 2009
MATHEMATICA
a[ n_] := If[ n < 0, 0, (-1)^n Numerator @ NorlundB[ n, n]]; (* Michael Somos, Jul 12 2014 *)
a[ n_] := If[ n < 0, 0, Numerator@Integrate[ Pochhammer[ x, n], {x, 0, 1}]]; (* Michael Somos, Jul 12 2014 *)
a[ n_] := If[ n < 0, 0, Numerator[ n! SeriesCoefficient[ -x / ((1 - x) Log[ 1 - x]), {x, 0, n}]]]; (* Michael Somos, Jul 12 2014 *)
a[ n_] := If[ n < 0, 0, (-1)^n Numerator[ n! SeriesCoefficient[ (x / (Exp[x] - 1))^n, {x, 0, n}]]]; (* Michael Somos, Jul 12 2014 *)
PROG
(Maxima) v(n):=if n=0 then 1 else 1-sum(v(i)/(n-i+1), i, 0, n-1);
(Magma) m:=25; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(-x/((1-x)*Log(1-x)) )); [Numerator(Factorial(n-1)*b[n]): n in [1..m-1]]; // G. C. Greubel, Oct 29 2018
Triangle of coefficients in expansion of (x+1)*(x+3)*...*(x + 2n - 1) in rising powers of x.
+10
27
1, 1, 1, 3, 4, 1, 15, 23, 9, 1, 105, 176, 86, 16, 1, 945, 1689, 950, 230, 25, 1, 10395, 19524, 12139, 3480, 505, 36, 1, 135135, 264207, 177331, 57379, 10045, 973, 49, 1, 2027025, 4098240, 2924172, 1038016, 208054, 24640, 1708, 64, 1, 34459425, 71697105, 53809164, 20570444, 4574934, 626934, 53676, 2796, 81, 1
COMMENTS
Exponential Riordan array (1/sqrt(1-2*x), log(1/sqrt(1-2*x))). - Paul Barry, May 09 2011
The o.g.f.s D(d, x) of the column sequences, for d, d >= 0,(d=0 for the main diagonal) are P(d, x)/(1 - x)^(2*d+1), with the row polynomial P(d, x) = Sum_{m=0..d} A288875(d, m)*x^m. See A288875 for details. - Wolfdieter Lang, Jul 21 2017
FORMULA
Triangle T(n, k), read by rows, given by [1, 2, 3, 4, 5, 6, 7, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 20 2005
T(n, k) = Sum_{i=k..n} (-2)^(n-i) * binomial(i, k) * s(n, i) where s(n, k) are signed Stirling numbers of the first kind. - Francis Woodhouse (fwoodhouse(AT)gmail.com), Nov 18 2005
G.f. of row polynomials in y: 1/(1-(x+x*y)/(1-2*x/(1-(3*x+x*y)/(1-4*x/(1-(5*x+x*y)/(1-6*x*y/(1-... (continued fraction). - Paul Barry, Feb 07 2009
T(n, m) = (2*n-1)*T(n-1,m) + T(n-1,m-1) with T(n, 0) = (2*n-1)!! and T(n, n) = 1. - Johannes W. Meijer, Jun 08 2009
E.g.f. of row polynomials in y: (1/sqrt(1-2*x))*exp(-y*log(sqrt(1-2*x))) = exp(-(1+y)*log(sqrt(1-2*x))) = 1/sqrt(1-2*x)^(1+y).
E.g.f. of column m sequence: (1/sqrt(1-2*x))* (-log(sqrt(1-2*x)))^m/m!. For the special Sheffer, also known as exponential Riordan array, see a comment above. (End)
Boas-Buck type recurrence for column sequence k: T(n, k) = (n!/(n - k)) * Sum_{p=k..n-1} 2^(n-1-p)*(1 + 2*k*beta(n-1-p))*T(p, k)/p!, for n > k >= 0, with input T(k, k) = 1, and beta(k) = A002208(k+1)/ A002209(k+1). See a comment and references in A286718. - Wolfdieter Lang, Aug 09 2017
EXAMPLE
G.f. for n = 4: (x + 1)*(x + 3)*(x + 5)*(x + 7) = 105 + 176*x + 86*x^2 + 16*x^3 + x^4.
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9
0: 1
1: 1 1
2: 3 4 1
3: 15 23 9 1
4: 105 176 86 16 1
5: 945 1689 950 230 25 1
6: 10395 19524 12139 3480 505 36 1
7: 135135 264207 177331 57379 10045 973 49 1
8: 2027025 4098240 2924172 1038016 208054 24640 1708 64 1
9: 34459425 71697105 53809164 20570444 4574934 626934 53676 2796 81 1
...
row n = 10: 654729075 1396704420 1094071221 444647600 107494190 16486680 1646778 106800 4335 100 1.
O.g.f.s of diagonals d >= 0: D(2, x) = (3 + 8*x + x^2)/(1 - x)^5 generating [3, 23, 86, ...] = A024196(n+1), from the row d=2 entries of A288875 [3, 8, 1]. - Wolfdieter Lang, Jul 21 2017
Boas-Buck recurrence for column k=2 and n=4: T(4, 2) = (4!/2)*(2*(1+4*(5/12))*T(2,2)/2! + 1*(1 + 4*(1/2))*T(3,2)/3!) = (4!/2)*(8/3*1 + 3*9/3!) = 86. - Wolfdieter Lang, Aug 11 2017
MAPLE
nmax:=8; for n from 0 to nmax do a(n, 0) := doublefactorial(2*n-1) od: for n from 0 to nmax do a(n, n) := 1 od: for n from 2 to nmax do for m from 1 to n-1 do a(n, m) := (2*n-1)*a(n-1, m) + a(n-1, m-1) od; od: seq(seq(a(n, m), m=0..n), n=0..nmax); # Johannes W. Meijer, Jun 08 2009, revised Nov 25 2012
MATHEMATICA
T[n_, k_] := Sum[(-2)^(n-i) Binomial[i, k] StirlingS1[n, i], {i, k, n}] (* Woodhouse *)
Join[{1}, Flatten[Table[CoefficientList[Expand[Times@@Table[x+i, {i, 1, 2n+1, 2}]], x], {n, 0, 10}]]] (* Harvey P. Dale, Jan 29 2013 *)
CROSSREFS
A161198 is a scaled triangle version and A109692 is a transposed triangle version.
Denominators of logarithmic numbers (also of Gregory coefficients G(n)).
(Formerly M2017 N0797)
+10
25
1, 2, 12, 24, 720, 160, 60480, 24192, 3628800, 1036800, 479001600, 788480, 2615348736000, 475517952000, 31384184832000, 689762304000, 32011868528640000, 15613165568, 786014494949376000, 109285437800448000
COMMENTS
Denominator of the determinant of the (n+1) X (n+1) matrix with 1's along the superdiagonal, (1/2)'s along the main diagonal, (1/3)'s along the subdiagonal, etc., and 0's everywhere else. - John M. Campbell, Dec 01 2011
REFERENCES
E. Isaacson and H. Bishop, Analysis of Numerical Methods, ISBN 0 471 42865 5, 1966, John Wiley and Sons, pp. 318-319. - Rudi Huysmans (rudi_huysmans(AT)hotmail.com), Apr 10 2000
Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 266.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
1/log(1+x) = Sum_{n>=-1} ( A002206(n)/a(n)) * x^n.
A002206(n)/ A002207(n) = (1/n!) * Sum_{j=1..n+1} Bernoulli(j)/j * S_1(n, j-1), where S_1(n,k) is the Stirling number of the first kind. - Barbara Margolius (b.margolius(AT)csuohio.edu), Jan 21 2002
G(0) = 0, G(n) = Sum_{i=1..n} (-1)^(i+1)*G(n-i)/(i+1) + (-1)^(n+1)*n/(2*(n+1)*(n+2)).
G(n) = (1/(n+1)!)*Integral_{x=0..1} x*(x-n)_n dx, where (a)_n is the Pochhammer symbol. - Vladimir Reshetnikov, Oct 22 2015
a(n) = denominator(f(n+1)), where f(0) = 1, f(n) = Sum_{k=0..n-1} (-1)^(n-k+1) * f(k) / (n-k+1). - Daniel Suteu, Nov 15 2018
EXAMPLE
Logarithmic numbers are 1, 1/2, -1/12, 1/24, -19/720, 3/160, -863/60480, 275/24192, -33953/3628800, 8183/1036800, -3250433/479001600, 4671/788480, -13695779093/2615348736000, 2224234463/475517952000, ... = A002206/ A002207
MAPLE
series(1/log(1+x), x, 25);
with(combinat, stirling1):seq(denom(1/i!*sum(bernoulli(j)/(j)*stirling1(i, j-1), j=1..i+1)), i=1..24);
MATHEMATICA
Table[Denominator[Det[Array[Sum[KroneckerDelta[#1, #2+q]*1/(q+2)^1, {q, -1, n+1}] &, {n+1, n+1}]]], {n, 0, 20}] (* John M. Campbell, Dec 01 2011 *)
a[n_] := Denominator[n!^-1*Sum[BernoulliB[j]/j*StirlingS1[n, j-1], {j, 1, n+1}]]; a[-1] = 1; Table[a[n], {n, -1, 18}] (* Jean-François Alcover, May 16 2012, after Maple *)
Denominator@Table[Integrate[x Pochhammer[x - n, n], {x, 0, 1}]/(n + 1)!, {n, -1, 20}] (* Vladimir Reshetnikov, Oct 22 2015 *)
Denominator@CoefficientList[x/Log[1+x] + O[x]^20, x] (* Oliver Seipel, Jul 06 2024 *)
PROG
(PARI) a(n) = denominator(sum(k=0, n+1, stirling(n+1, k, 1)/((n+1)!*(k+1)))); \\ Michel Marcus, Mar 20 2018
(Python)
from math import factorial
from fractions import Fraction
from sympy.functions.combinatorial.numbers import stirling
def A002207(n): return (sum(Fraction(stirling(n+1, k, kind=1, signed=True), k+1) for k in range(n+2))/factorial(n+1)).denominator # Chai Wah Wu, Feb 12 2023
(SageMath)
from functools import cache
@cache
def h(n):
return (-sum((-1)**k * h(n - k) / (k + 1) for k in range(1, n + 1))
+ (-1)**n * n / (2*(n + 1)*(n + 2)))
def a(n): return h(n).denom() if n > 0 else n + 2
print([a(n) for n in range(-1, 19)]) # Peter Luschny, Dec 12 2023
Denominators of Cauchy numbers of second type (= Bernoulli numbers B_n^{(n)}).
(Formerly M1559 N0608)
+10
23
1, 2, 6, 4, 30, 12, 84, 24, 90, 20, 132, 24, 5460, 840, 360, 16, 1530, 180, 7980, 840, 13860, 440, 1656, 720, 81900, 6552, 216, 112, 3480, 240, 114576, 7392, 117810, 2380, 1260, 72, 3838380, 207480, 32760, 560, 568260, 27720, 238392, 55440, 869400, 2576, 236880
COMMENTS
The numerators are given in A002657.
These coefficients (with alternating signs) are also known as the Nørlund [or Norlund, Noerlund or Nörlund] numbers.
A simple series with the signless Cauchy numbers of second type C2(n) leads to Euler's constant: gamma = 1 - Sum_{n >=1} C2(n)/(n*(n+1)!) = 1 - 1/4 - 5/72 - 1/32 - 251/14400 - 19/1728 - 19087/2540160 - ..., see references [Blagouchine] below, as well as A075266 and A262235. - Iaroslav V. Blagouchine, Sep 15 2015
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 294.
L. M. Milne-Thompson, Calculus of Finite Differences, 1951, p. 136.
N. E. Nørlund, Vorlesungen über Differenzenrechnung, Springer-Verlag, Berlin, 1924.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Donatella Merlini, Renzo Sprugnoli and M. Cecilia Verri, The Cauchy numbers, Discrete Math. 306 (2006), no. 16, 1906-1920.
FORMULA
Denominator of integral of x(x+1)...(x+n-1) from 0 to 1.
a(n) = denominator(n!*v(n)), where v(n) = 1 - Sum_{i=0..n-1} v(i)/(n-i+1), v(0)=1. - Vladimir Kruchinin, Aug 28 2013
EXAMPLE
1, 1/2, 5/6, 9/4, 251/30, 475/12, 19087/84, 36799/24, 1070017/90, ...
MAPLE
denom(add((-1)^k*stirling1(n, k)/(k+1), k=0..n)) ;
PROG
(Maxima)
v(n):=if n=0 then 1 else 1-sum(v(i)/(n-i+1), i, 0, n-1);
(Magma) m:=60; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(-x/((1-x)*Log(1-x)) )); [Denominator(Factorial(n-1)*b[n]): n in [1..m-1]]; // G. C. Greubel, Oct 28 2018
Search completed in 0.034 seconds
|