[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A188919
Triangle read by rows: T(n,k) = number of permutations of length n with k inversions that avoid the "dashed pattern" 1-32.
10
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 4, 3, 3, 1, 1, 1, 2, 4, 7, 8, 9, 9, 6, 4, 1, 1, 1, 2, 4, 7, 13, 16, 22, 26, 29, 26, 23, 17, 10, 5, 1, 1, 1, 2, 4, 7, 13, 22, 31, 44, 60, 74, 89, 95, 98, 93, 82, 63, 47, 29, 15, 6, 1, 1, 1, 2, 4, 7, 13, 22, 38, 55, 83, 116, 160, 207, 259, 304, 347, 375, 386, 378, 348, 304, 249, 190, 131, 85, 46, 21, 7, 1
OFFSET
0,7
COMMENTS
Row n has length 1 + binomial(n,2) and sum A000110(n) (a Bell number).
LINKS
A. M. Baxter, Algorithms for Permutation Statistics, Ph. D. Dissertation, Rutgers University, May 2011.
Andrew M. Baxter and Lara K. Pudwell, Enumeration schemes for dashed patterns, arXiv preprint arXiv:1108.2642, 2011
Jean-Christophe Novelli, Jean-Yves Thibon, Frédéric Toumazet, Noncommutative Bell polynomials and the dual immaculate basis, arXiv:1705.08113 [math.CO], 2017.
EXAMPLE
Triangle begins:
1
1
1 1
1 1 2 1
1 1 2 4 3 3 1
1 1 2 4 7 8 9 9 6 4 1
...
MAPLE
b:= proc(u, o) option remember; expand(`if`(u+o=0, 1,
add(b(u-j, o+j-1)*x^(o+j-1), j=1..u)+
add(`if`(u=0, b(u+j-1, o-j)*x^(o-j), 0), j=1..o)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(0, n)):
seq(T(n), n=0..10); # Alois P. Heinz, Nov 14 2015
MATHEMATICA
b[u_, o_] := b[u, o] = Expand[If[u+o == 0, 1, Sum[b[u-j, o+j-1]* x^(o+j-1), {j, 1, u}] + Sum[If[u == 0, b[u+j-1, o-j]*x^(o-j), 0], {j, 1, o}]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}] ][b[0, n]]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 01 2016, after Alois P. Heinz *)
CROSSREFS
The column limits are given by A188920.
Sequence in context: A267383 A332648 A272896 * A026519 A025177 A026148
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Apr 13 2011
EXTENSIONS
More terms from Andrew Baxter, May 17 2011.
STATUS
approved