[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a005196 -id:a005196
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle of numbers of forests on n nodes containing k trees.
+10
11
1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 3, 2, 1, 1, 6, 6, 4, 2, 1, 1, 11, 11, 7, 4, 2, 1, 1, 23, 23, 14, 8, 4, 2, 1, 1, 47, 46, 29, 15, 8, 4, 2, 1, 1, 106, 99, 60, 32, 16, 8, 4, 2, 1, 1, 235, 216, 128, 66, 33, 16, 8, 4, 2, 1, 1, 551, 488, 284, 143, 69, 34, 16, 8, 4, 2, 1, 1, 1301, 1121, 636, 315, 149, 70, 34, 16, 8, 4, 2, 1, 1
OFFSET
1,7
COMMENTS
Row sums are A005195.
For k > n/2, T(n,k) = T(n-1,k-1). - Geoffrey Critzer, Oct 13 2012
LINKS
Peter Steinbach, Field Guide to Simple Graphs, Volume 3, Part 12 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
Peter Steinbach, Field Guide to Simple Graphs, Volume 4, Part 6 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
Eric Weisstein's World of Mathematics, Forest
FORMULA
T(n, k) = sum over the partitions of n, 1M1 + 2M2 + ... + nMn, with exactly k parts, of Product_{i=1..n} binomial(A000055(i) + Mi - 1, Mi). - Washington Bomfim, May 12 2005
EXAMPLE
Triangle begins:
1;
1, 1;
1, 1, 1;
2, 2, 1, 1;
3, 3, 2, 1, 1;
6, 6, 4, 2, 1, 1;
11, 11, 7, 4, 2, 1, 1;
23, 23, 14, 8, 4, 2, 1, 1;
47, 46, 29, 15, 8, 4, 2, 1, 1;
106, 99, 60, 32, 16, 8, 4, 2, 1, 1;
...
MAPLE
with(numtheory):
b:= proc(n) option remember; local d, j; `if` (n<=1, n,
(add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/(n-1))
end:
t:= proc(n) option remember; local k; `if` (n=0, 1,
b(n)-(add(b(k)*b(n-k), k=0..n)-`if`(irem(n, 2)=0, b(n/2), 0))/2)
end:
g:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1,
`if`(min(i, p)<1, 0, add(g(n-i*j, i-1, p-j) *
binomial(t(i)+j-1, j), j=0..min(n/i, p)))))
end:
a:= (n, k)-> g(n, n, k):
seq(seq(a(n, k), k=1..n), n=1..14); # Alois P. Heinz, Aug 20 2012
MATHEMATICA
nn=30; s[n_, k_]:=s[n, k]=a[n+1-k]+If[n<2k, 0, s[n-k, k]]; a[1]=1; a[n_]:=a[n]=Sum[a[i]s[n-1, i]i, {i, 1, n-1}]/(n-1); ft=Table[a[i]-Sum[a[j]a[i-j], {j, 1, i/2}]+If[OddQ[i], 0, a[i/2](a[i/2]+1)/2], {i, 1, nn}]; CoefficientList[Series[Product[1/(1-y x^i)^ft[[i]], {i, 1, nn}], {x, 0, 20}], {x, y}]//Grid (* Geoffrey Critzer, Oct 13 2012, after code given by Robert A. Russell in A000055 *)
CROSSREFS
Cf. A005195 (row sums), A005196, A106240, A000055 (first column), A274937 (2nd column), A105821.
Limiting sequence of reversed rows gives A215930.
Reflected table is A136605. - Alois P. Heinz, Apr 11 2014
KEYWORD
nonn,tabl
AUTHOR
Eric W. Weisstein, May 29 2004
EXTENSIONS
More terms from Vladeta Jovovic, Jun 03 2004
STATUS
approved
a(n) = Sum_t t*F(n,t), where F(n,t) (see A033185) is the number of rooted forests with n (unlabeled) nodes and exactly t rooted trees.
(Formerly M2663)
+10
5
1, 3, 7, 17, 39, 96, 232, 583, 1474, 3797, 9864, 25947, 68738, 183612, 493471, 1334143, 3624800, 9893860, 27113492, 74577187, 205806860, 569678759, 1581243203, 4400193551, 12273287277, 34307646762, 96093291818, 269654004899, 758014312091, 2134300171031
OFFSET
1,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
E. M. Palmer and A. J. Schwenk, On the number of trees in a random forest, J. Combin. Theory, B 27 (1979), 109-121.
FORMULA
To get a(n), take row n of the triangle in A033185, multiply successive terms by 1, 2, 3, ... and sum. E.g. a(4) = 1*4+2*3+3*1+4*1 = 17.
a(n) ~ c * d^n / n^(3/2), where d = A051491 = 2.955765285..., c = 2.85007275... . - Vaclav Kotesovec, Sep 10 2014
MAPLE
with(numtheory):
t:= proc(n) option remember; local d, j; `if`(n<=1, n,
(add(add(d*t(d), d=divisors(j))*t(n-j), j=1..n-1))/(n-1))
end:
b:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1,
`if`(min(i, p)<1, 0, add(b(n-i*j, i-1, p-j) *
binomial(t(i)+j-1, j), j=0..min(n/i, p)))))
end:
a:= a-> add(k*b(n, n, k), k=1..n):
seq(a(n), n=1..40); # Alois P. Heinz, Aug 20 2012
MATHEMATICA
t[1] = 1; t[n_] := t[n] = Module[{d, j}, Sum[Sum[d*t[d], {d, Divisors[j]}]*t[n-j], {j, 1, n-1}]/(n-1)]; b[1, 1, 1] = 1; b[n_, i_, p_] := b[n, i, p] = If[p>n, 0, If[n == 0, 1, If[Min[i, p]<1, 0, Sum[b[n-i*j, i-1, p-j]*Binomial[t[i]+j-1, j], {j, 0, Min[n/i, p]}]]]]; a[n_] := Sum[k*b[n, n, k], {k, 1, n}]; Table[a[n] // FullSimplify, {n, 1, 30}] (* Jean-François Alcover, Mar 13 2014, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane. Definition clarified by N. J. A. Sloane, May 29 2012
EXTENSIONS
More terms from Alois P. Heinz, Aug 20 2012
STATUS
approved
a(n) = Sum_t t*F(n,t), where F(n,t) is the number of forests with n (unlabeled) nodes and exactly t trees, all of which are planted (that is, rooted trees in which the root has degree 1).
(Formerly M3285)
+10
2
0, 1, 1, 4, 6, 18, 35, 93, 214, 549, 1362, 3534, 9102, 23951, 63192, 168561, 451764, 1219290, 3305783, 9008027, 24643538, 67681372, 186504925, 515566016, 1429246490, 3972598378, 11068477743, 30908170493, 86488245455, 242481159915, 681048784377, 1916051725977, 5399062619966
OFFSET
1,4
COMMENTS
The triangular array F(n,t) (analogous to A095133 for A005196 and A033185 for A005197) is A336087.
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
E. M. Palmer and A. J. Schwenk, On the number of trees in a random forest, J. Combin. Theory, B 27 (1979), 109-121.
FORMULA
a(n) = Sum_{t=1, floor(n/2)}( t*F(n,t) ), where F(n,t) = Sum_{P_1(n,t)} (Product_{k=2..n} binomial(A000081(k-1) + c_k - 1, c_k)), where P_1(n, t) is the set of the partitions of n with t parts greater than one: 2*c_2 + ... + n*c_n = n; c_2, ..., c_n >= 0. - Washington Bomfim, Jul 08 2020
PROG
(PARI) g(m) = {my(f); if(m==0, return(1)); f = vector(m+1); f[1]=1;
for(j=1, m, f[j+1]=1/j * sum(k=1, j, sumdiv(k, d, d * f[d]) * f[j-k+1])); f[m+1] };
global(max_n = 130); A000081 = vector(max_n, n, g(n-1));
F(n, t)={my(s=0, D, c, P_1); forpart(P_1 = n, D = Set(P_1); c = vector(#D);
for(k=1, #D, c[k] = #select(x->x == D[k], Vec(P_1)));
s += prod(k=1, #D, binomial( A000081[D[k]-1] + c[k] - 1, c[k]) )
, [2, n], [t, t]); s};
seq(n) = sum(t=1, n\2, t*F(n, t) ); \\ Washington Bomfim, Jul 08 2020
CROSSREFS
KEYWORD
nonn
EXTENSIONS
Definition clarified by N. J. A. Sloane, May 29 2012
STATUS
approved
Numerators of average numbers of trees in a forest on n nodes.
+10
1
1, 3, 2, 13, 12, 49, 93, 5, 127, 803, 1703, 3755, 271, 19338, 45275, 108229, 262604, 647083, 1613941, 2036099, 576341, 13331695, 264583, 90049334, 236302157, 38973748, 330784573, 8814122981, 7861906901, 63359160443, 42703885427
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, Forest
FORMULA
Numerators of A005196/A005195.
EXAMPLE
1, 3/2, 2, 13/6, 12/5, 49/20, 93/37, 5/2, 127/51, ...
CROSSREFS
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, May 29 2004
EXTENSIONS
More terms from Vladeta Jovovic, Jun 03 2004
STATUS
approved
Denominators of average numbers of trees in a forest on n nodes.
+10
1
1, 2, 1, 6, 5, 20, 37, 2, 51, 329, 710, 1601, 118, 8599, 20514, 49905, 122963, 307199, 775529, 988939, 282591, 6592078, 131812, 45164337, 119237493, 19774239, 168670563, 4514955632, 4044075790, 32717113805, 22129966762, 240235675303
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, Forest
FORMULA
Denominators of A005196/A005195.
EXAMPLE
1, 3/2, 2, 13/6, 12/5, 49/20, 93/37, 5/2, 127/51, ...
CROSSREFS
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, May 29 2004
EXTENSIONS
More terms from Vladeta Jovovic, Jun 03 2004
STATUS
approved

Search completed in 0.009 seconds