[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a005199 -id:a005199
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle read by rows: T(n, k) is the number of forests with n (unlabeled) nodes and k planted trees.
+10
2
0, 1, 0, 1, 0, 0, 2, 1, 0, 0, 4, 1, 0, 0, 0, 9, 3, 1, 0, 0, 0, 20, 6, 1, 0, 0, 0, 0, 48, 16, 3, 1, 0, 0, 0, 0, 115, 37, 7, 1, 0, 0, 0, 0, 0, 286, 96, 18, 3, 1, 0, 0, 0, 0, 0, 719, 239, 44, 7, 1, 0, 0, 0, 0, 0, 0, 1842, 622, 117, 19, 3, 1, 0, 0, 0, 0, 0, 0, 4766, 1607, 299, 46, 7, 1, 0, 0, 0, 0, 0, 0, 0, 12486, 4235, 793, 124
OFFSET
1,7
COMMENTS
The number of planted trees with n+1 nodes is equal to the number of rooted trees with n nodes. [See Palmer-Schwenk link, pp. 115].
LINKS
FORMULA
T(1,1) = 0, if n >= 2 T(n,k) = Sum_{P_1(n,k)}( Product_{j=2..n} binomial(A000081(j-1) + c_j - 1, c_j) ), where P_1(n, k) is the set of the partitions of n with k parts greater than one: 2*c_2 + ... + n*c_n = n; c_2, ..., c_n >= 0.
If k > floor(n/2), T(n,k) = 0; otherwise T(n,k) = A033185(n-k, k).
EXAMPLE
Triangle T(n,k)
n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0;
2 1, 0;
3 1, 0, 0;
4 2, 1, 0, 0;
5 4, 1, 0, 0, 0;
6 9, 3, 1, 0, 0, 0;
7 20, 6, 1, 0, 0, 0, 0;
8 48, 16, 3, 1, 0, 0, 0, 0;
9 115, 37, 7, 1, 0, 0, 0, 0, 0;
10 286, 96, 18, 3, 1, 0, 0, 0, 0, 0;
11 719, 239, 44, 7, 1, 0, 0, 0, 0, 0, 0;
12 1842, 622, 117, 19, 3, 1, 0, 0, 0, 0, 0, 0;
13 4766, 1607, 299, 46, 7, 1, 0, 0, 0, 0, 0, 0, 0;
14 12486, 4235, 793, 124, 19, 3, 1, 0, 0, 0, 0, 0, 0, 0;
15 32973, 11185, 2095, 320, 47, 7, 1, 0, 0, 0, 0, 0, 0, 0, 0;
...
n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
A005199(6) = Sum_{k=1..6}( k * T(6,k) ) = 1*9 + 2*3 +3*1 = 18.
PROG
(PARI) g(m) = {my(f); if(m==0, return(1)); f = vector(m+1); f[1]=1;
for(j=1, m, f[j+1]=1/j * sum(k=1, j, sumdiv(k, d, d * f[d]) * f[j-k+1])); f[m+1] };
global(max_n = 130); A000081 = vector(max_n, n, g(n-1));
F(n, t)={my(s=0, D, c, P_1); if(n==1, return(0)); forpart(P_1 = n, D = Set(P_1); c = vector(#D); for(k=1, #D, c[k] = #select(x->x == D[k], Vec(P_1)));
s += prod(k=1, #D, binomial( A000081[D[k]-1] + c[k] - 1, c[k])), [2, n], [t, t]); s};
CROSSREFS
Cf. A000081, A005199, A005198 (row sums), A033185.
KEYWORD
nonn,tabl
AUTHOR
Washington Bomfim, Jul 08 2020
STATUS
approved

Search completed in 0.011 seconds