OFFSET
1,7
COMMENTS
The number of planted trees with n+1 nodes is equal to the number of rooted trees with n nodes. [See Palmer-Schwenk link, pp. 115].
LINKS
E. M. Palmer and A. J. Schwenk, On the number of trees in a random forest, J. Combin. Theory, B 27 (1979), 109-121.
FORMULA
EXAMPLE
Triangle T(n,k)
n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0;
2 1, 0;
3 1, 0, 0;
4 2, 1, 0, 0;
5 4, 1, 0, 0, 0;
6 9, 3, 1, 0, 0, 0;
7 20, 6, 1, 0, 0, 0, 0;
8 48, 16, 3, 1, 0, 0, 0, 0;
9 115, 37, 7, 1, 0, 0, 0, 0, 0;
10 286, 96, 18, 3, 1, 0, 0, 0, 0, 0;
11 719, 239, 44, 7, 1, 0, 0, 0, 0, 0, 0;
12 1842, 622, 117, 19, 3, 1, 0, 0, 0, 0, 0, 0;
13 4766, 1607, 299, 46, 7, 1, 0, 0, 0, 0, 0, 0, 0;
14 12486, 4235, 793, 124, 19, 3, 1, 0, 0, 0, 0, 0, 0, 0;
15 32973, 11185, 2095, 320, 47, 7, 1, 0, 0, 0, 0, 0, 0, 0, 0;
...
n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
A005199(6) = Sum_{k=1..6}( k * T(6,k) ) = 1*9 + 2*3 +3*1 = 18.
PROG
(PARI) g(m) = {my(f); if(m==0, return(1)); f = vector(m+1); f[1]=1;
for(j=1, m, f[j+1]=1/j * sum(k=1, j, sumdiv(k, d, d * f[d]) * f[j-k+1])); f[m+1] };
global(max_n = 130); A000081 = vector(max_n, n, g(n-1));
F(n, t)={my(s=0, D, c, P_1); if(n==1, return(0)); forpart(P_1 = n, D = Set(P_1); c = vector(#D); for(k=1, #D, c[k] = #select(x->x == D[k], Vec(P_1)));
s += prod(k=1, #D, binomial( A000081[D[k]-1] + c[k] - 1, c[k])), [2, n], [t, t]); s};
KEYWORD
nonn,tabl
AUTHOR
Washington Bomfim, Jul 08 2020
STATUS
approved