[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005196
a(n) = Sum_t t*F(n,t), where F(n,t) (see A095133) is the number of forests with n (unlabeled) nodes and exactly t trees.
(Formerly M2567)
6
1, 3, 6, 13, 24, 49, 93, 190, 381, 803, 1703, 3755, 8401, 19338, 45275, 108229, 262604, 647083, 1613941, 4072198, 10374138, 26663390, 69056163, 180098668, 472604314, 1247159936, 3307845730, 8814122981, 23585720703, 63359160443, 170815541708, 462049250165
OFFSET
1,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
E. M. Palmer and A. J. Schwenk, On the number of trees in a random forest, J. Combin. Theory, B 27 (1979), 109-121. [The 17th entry is wrong]
Eric Weisstein's World of Mathematics, Forest
FORMULA
To get a(n), take row n of the triangle in A095133, multiply successive terms by 1, 2, 3, ... and sum. E.g., a(4) = 1*2 + 2*2 + 3*1 + 4*1 = 13.
MAPLE
with(numtheory):
b:= proc(n) option remember; local d, j; `if` (n<=1, n,
(add(add(d*b(d), d=divisors(j))*b(n-j), j=1..n-1))/(n-1))
end:
t:= proc(n) option remember; local k; `if` (n=0, 1,
b(n)-(add(b(k)*b(n-k), k=0..n)-`if`(irem(n, 2)=0, b(n/2), 0))/2)
end:
g:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1,
`if`(min(i, p)<1, 0, add(g(n-i*j, i-1, p-j) *
binomial(t(i)+j-1, j), j=0..min(n/i, p)))))
end:
a:= n-> add(k*g(n, n, k), k=1..n):
seq(a(n), n=1..40); # Alois P. Heinz, Aug 20 2012
MATHEMATICA
nn=30; s[n_, k_]:=s[n, k]=a[n+1-k]+If[n<2k, 0, s[n-k, k]]; a[1]=1; a[n_]:=a[n]=Sum[a[i]s[n-1, i]i, {i, 1, n-1}]/(n-1); ft=Table[a[i]-Sum[a[j]a[i-j], {j, 1, i/2}]+If[OddQ[i], 0, a[i/2](a[i/2]+1)/2], {i, 1, nn}]; CoefficientList[Series[D[Product[1/(1-y x^i)^ft[[i]], {i, 1, nn}], y]/.y->1, {x, 0, 20}], x] (* Geoffrey Critzer, Oct 13 2012, after code given by Robert A. Russell in A000055 *)
CROSSREFS
KEYWORD
nonn,nice
EXTENSIONS
More terms from Vladeta Jovovic, Jun 03 2004
Definition clarified by N. J. A. Sloane, May 29 2012
STATUS
approved