proposed
approved
proposed
approved
editing
proposed
allocated for Gus WisemanNumber of series-reduced rooted identity trees whose leaves span an initial interval of positive integers with multiplicities the integer partition with Heinz number n.
0, 1, 0, 1, 0, 1, 0, 4, 3, 1, 0, 9, 0, 1, 6, 26, 0, 36, 0, 16, 10, 1, 0, 92, 21, 1, 197, 25, 0, 100, 0, 236, 15, 1, 53, 474
1,8
A rooted tree is series-reduced if every non-leaf node has at least two branches. It is an identity tree if no branch appears multiple times under the same root.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
a(prime(n>1)) = 0.
a(2^n) = A000311(n).
Sequence of sets of trees begins:
1:
2: 1
3:
4: (12)
5:
6: (1(12))
7:
8: (1(23)), (2(13)), (3(12)), (123)
9: (1(2(12))), (2(1(12))), (12(12))
10: (1(1(12)))
11:
12: (1(1(23))), (1(2(13))), (1(3(12))), (1(123)), (2(1(13))), (3(1(12))), ((12)(13)), (12(13)), (13(12))
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
gro[m_]:=If[Length[m]==1, m, Select[Union[Sort/@Join@@(Tuples[gro/@#]&/@Select[mps[m], Length[#]>1&])], UnsameQ@@#&]];
Table[Length[gro[Flatten[MapIndexed[Table[#2, {#1}]&, If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]]]]]], {n, 30}]
allocated
nonn,more
Gus Wiseman, Jul 09 2018
approved
editing
allocated for Gus Wiseman
allocated
approved