[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A316651
Number of series-reduced rooted trees with n leaves spanning an initial interval of positive integers.
30
1, 2, 12, 112, 1444, 24086, 492284, 11910790, 332827136, 10546558146, 373661603588, 14636326974270, 628032444609396, 29296137817622902, 1476092246351259964, 79889766016415899270, 4622371378514020301740, 284719443038735430679268, 18601385258191195218790756
OFFSET
1,2
COMMENTS
A rooted tree is series-reduced if every non-leaf node has at least two branches.
LINKS
FORMULA
From Vaclav Kotesovec, Sep 18 2019: (Start)
a(n) ~ c * d^n * n^(n-1), where d = 1.37392076830840090205551979... and c = 0.41435722857311602982846...
a(n) ~ 2*log(2)*A326396(n)/n. (End)
EXAMPLE
The a(3) = 12 trees:
(1(11)), (111),
(1(12)), (2(11)), (112),
(1(22)), (2(12)), (122),
(1(23)), (2(13)), (3(12)), (123).
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(A(i, k)+j-1, j)*b(n-i*j, i-1, k), j=0..n/i)))
end:
A:= (n, k)-> `if`(n<2, n*k, b(n, n-1, k)):
a:= n-> add(add(A(n, k-j)*(-1)^j*binomial(k, j), j=0..k-1), k=1..n):
seq(a(n), n=1..20); # Alois P. Heinz, Sep 18 2018
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
gro[m_]:=If[Length[m]==1, m, Union[Sort/@Join@@(Tuples[gro/@#]&/@Select[mps[m], Length[#]>1&])]];
allnorm[n_Integer]:=Function[s, Array[Count[s, y_/; y<=#]+1&, n]]/@Subsets[Range[n-1]+1];
Table[Sum[Length[gro[m]], {m, allnorm[n]}], {n, 5}]
(* Second program: *)
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0,
Sum[Binomial[A[i, k] + j - 1, j] b[n - i*j, i - 1, k], {j, 0, n/i}]]];
A[n_, k_] := If[n < 2, n*k, b[n, n - 1, k]];
a[n_] := Sum[Sum[A[n, k-j]*(-1)^j*Binomial[k, j], {j, 0, k-1}], {k, 1, n}];
Array[a, 20] (* Jean-François Alcover, May 09 2021, after Alois P. Heinz *)
PROG
(PARI) \\ here R(n, k) is A000669, A050381, A220823, ...
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
R(n, k)={my(v=[k]); for(n=2, n, v=concat(v, EulerT(concat(v, [0]))[n])); v}
seq(n)={sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) )} \\ Andrew Howroyd, Sep 14 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 09 2018
EXTENSIONS
Terms a(9) and beyond from Andrew Howroyd, Sep 14 2018
STATUS
approved