[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Revision History for A260486 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Expansion of phi(-x)^2 * phi(-x^6) / phi(-x^3) in powers of x where phi() is a Ramanujan theta function.
(history; published version)
#10 by Charles R Greathouse IV at Sun Feb 16 08:33:26 EST 2025
LINKS

Eric Weisstein's World of Mathematics, <a href="httphttps://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

Discussion
Sun Feb 16
08:33
OEIS Server: https://oeis.org/edit/global/3014
#9 by Charles R Greathouse IV at Fri Mar 12 22:24:48 EST 2021
LINKS

M. Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

Discussion
Fri Mar 12
22:24
OEIS Server: https://oeis.org/edit/global/2897
#8 by N. J. A. Sloane at Wed Nov 13 21:58:50 EST 2019
LINKS

M. Somos, <a href="http://somos.crg4.comA010815/multiqa010815.htmltxt">Introduction to Ramanujan theta functions</a>

Discussion
Wed Nov 13
21:58
OEIS Server: https://oeis.org/edit/global/2832
#7 by Peter Luschny at Sun Mar 18 09:50:59 EDT 2018
STATUS

reviewed

approved

#6 by Michel Marcus at Sun Mar 18 05:07:54 EDT 2018
STATUS

proposed

reviewed

#5 by G. C. Greubel at Sun Mar 18 01:55:39 EDT 2018
STATUS

editing

proposed

#4 by G. C. Greubel at Sun Mar 18 01:55:25 EDT 2018
LINKS

G. C. Greubel, <a href="/A260486/b260486.txt">Table of n, a(n) for n = 0..1000</a>

FORMULA

Expansion of eta(q)^4 * eta(q^6)^3 / (eta(q^2)^2 * eta(q^3)^2 * eta(q^12)) in powers of q.

MATHEMATICA

a[n_]:= SeriesCoefficient[EllipticTheta[3, 0, -x]^2* EllipticTheta[3, 0, -x^6]/EllipticTheta[3, 0, -x^3], {x, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Mar 17 2018 *)

STATUS

approved

editing

#3 by Michael Somos at Sun Jul 26 23:27:30 EDT 2015
STATUS

editing

approved

#2 by Michael Somos at Sun Jul 26 23:27:21 EDT 2015
NAME

allocated for Michael SomosExpansion of phi(-x)^2 * phi(-x^6) / phi(-x^3) in powers of x where phi() is a Ramanujan theta function.

DATA

1, -4, 4, 2, -4, 0, 2, 0, -4, 0, 0, 8, -2, 0, 0, 0, -4, -8, 0, 8, 0, 0, 8, 0, -2, -4, 0, -2, 0, 0, 0, 0, -4, -4, 8, 0, 0, 0, 8, 0, 0, -8, 0, 8, -8, 0, 0, 0, -2, -4, 4, 4, 0, 0, -2, 0, 0, -4, 0, 8, 0, 0, 0, 0, -4, 0, 4, 8, -8, 0, 0, 0, 0, -8, 0, 2, -8, 0, 0, 0

OFFSET

0,2

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

LINKS

M. Somos, <a href="http://somos.crg4.com/multiq.html">Introduction to Ramanujan theta functions</a>

Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

FORMULA

Expansion of eta(q)^4 * eta(q^6)^3 / (eta(q^2)^2 * eta(q^3)^2 * eta(q^12)) in powers of q.

Euler transform of period 12 sequence [ -4, -2, -2, -2, -4, -3, -4, -2, -2, -2, -4, -2, ...].

Convolution of A010815 and A257657.

EXAMPLE

G.f. = 1 - 4*x + 4*x^2 + 2*x^3 - 4*x^4 + 2*x^6 - 4*x^8 + 8*x^11 - 2*x^12 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x]^2 EllipticTheta[ 4, 0, x^6] / EllipticTheta[ 4, 0, x^3], {x, 0, n}];

a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2]^2 QPochhammer[ x]^2 QPochhammer[ -x^3] / QPochhammer[ x^3], {x, 0, n}];

a[ n_] := If[ n < 1, Boole[n == 0], -4 I^(n-1) Sum[ {1, I, -1/2, I, 1, -I/2}[[Mod[d, 6, 1]]] KroneckerSymbol[ -2, n/d], {d, Divisors[ n]}]];

PROG

(PARI) {a(n) = if( n<1, n==0, -4 * I^(n-1) * sumdiv(n, d, [-I/2, 1, I, -1/2, I, 1][d%6+1] * kronecker(-2, n/d)))};

(PARI) {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); -4 * I^(n-1) * prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, I, p==3, 1-e/2, p%8 > 4, !(e%2), e+1)))};

(PARI) {a(n) = if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^4 * eta(x^6 + A)^3 / (eta(x^2 + A)^2 * eta(x^3 + A)^2 * eta(x^12 + A)), n))};

CROSSREFS
KEYWORD

allocated

sign

AUTHOR

Michael Somos, Jul 26 2015

STATUS

approved

editing

#1 by Michael Somos at Sun Jul 26 23:27:21 EDT 2015
NAME

allocated for Michael Somos

KEYWORD

allocated

STATUS

approved