Eric Weisstein's World of Mathematics, <a href="httphttps://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
Eric Weisstein's World of Mathematics, <a href="httphttps://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
M. Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
M. Somos, <a href="http://cis.csuohio.edu/~somosA010815/multiqa010815pdftxt">Introduction to Ramanujan theta functions</a>
reviewed
approved
proposed
reviewed
editing
proposed
G. C. Greubel, <a href="/A193514/b193514.txt">Table of n, a(n) for n = 0..1000</a>
approved
editing
editing
approved
G.f. is a period 1 Fourier series which satisfies f(-1 / (18 t)) = 432^(1/2) (t / i) g(t) where q = exp(2 pi Pi i t) and g() is g.f. for A193426.
G.f. = 1 - 4*q + 4*q^2 + 2*q^3 - 4*q^4 + 4*q^6 - 8*q^7 + 4*q^8 + 2*q^9 + 2*q^12 + ...
a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q]^2 EllipticTheta[ 4, 0, q^9] / EllipticTheta[ 4, 0, q^3] , , {q, 0, n}];
(PARI) {a(n) = if( n<1, n==0, 2 * if( n%3==1, -2, 1) * sumdiv( n, d, -(-1)^d * kronecker( -3, d)))};
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^4 * eta(x^6 + A) * eta(x^9 + A)^2 / (eta(x^2 + A)^2 * eta(x^3 + A)^2 * eta(x^18 + A)), n))};
approved
editing
_Michael Somos, _, Jul 29 2011