editing
proposed
editing
proposed
(PARI) x='x+O('x^66); Vec(eta(x^2)/eta(x)^3) \\ Joerg Arndt, Dec 05 2010]
proposed
editing
editing
proposed
G.f.: A(x) = E(x^2)/E(x)^3 where E(x)=prod(n>=1, 1-x^n). [Joerg Arndt, Dec 05 2010]
The ordinary generating function A(x) is the infinite product AF(x) * AF(x^2) * AF(x^3) * ..., where AF(x) is the ordinary generating function of A005408. - Gary W. Adamson, Jul 15 2012
From Peter Bala, Jan 24 2016: (Start)
a(n) = Sum_{k = 0..2*n} (-1)^k*p(k)*p(2*n-k), where p(n) = A000041(n) is the partition function.
A(x^2) = 1/Product_{n>=1} (1 - (-x)^n) * 1/Product_{n>=1} (1 - x^n). (End)
with(combinat):
seq(add((-1)^k*numbpart(k)*numbpart(2*n - k), k = 0..2*n), n = 0..40);
nonn,easy
approved
editing
editing
approved
a(n) ~ 5^(3/4) * exp(Pi*sqrt(5*n/3)) / (16 * 3^(3/4) * n^(5/4)). - Vaclav Kotesovec, Nov 29 2015
nmax = 40; CoefficientList[Series[Product[(1+x^k)/(1-x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 29 2015 *)
nmax = 40; CoefficientList[Series[Exp[Sum[(DivisorSigma[1, 2*n])*(x^n/n), {n, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 29 2015 *)
approved
editing
editing
approved
Vaclav Kotesovec, <a href="/A182818/b182818.txt">Table of n, a(n) for n = 0..10000</a>
approved
editing