OFFSET
0,2
COMMENTS
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
FORMULA
G.f.: E(x^2)/E(x)^3 where E(x)=prod(n>=1, 1-x^n). [Joerg Arndt, Dec 05 2010]
Conjecture: exp( sum(n>=1, sigma(s*n)*x^n/n) ) == prod( d divides s, eta(x^d)^(-moebius(d)*sigma(s/d)) ). [Joerg Arndt, Dec 05 2010]
The ordinary generating function is the infinite product A(x) * A(x^2) * A(x^3) * ..., where A(x) is the ordinary generating function of A005408. - Gary W. Adamson, Jul 15 2012
EXAMPLE
G.f.: A(x) = 1 + 3*x + 8*x^2 + 19*x^3 + 41*x^4 + 83*x^5 + 161*x^6 +...
log(A(x)) = 3*x + 7*x^2/2 + 12*x^3/3 + 15*x^4/4 + 18*x^5/5 + 28*x^6/6 + 24*x^7/7 + 31*x^8/8 +...+ sigma(2n)*x^n/n +...
MATHEMATICA
nmax = 40; CoefficientList[Series[Exp[Sum[(DivisorSigma[1, 2*n])*(x^n/n), {n, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 29 2015 *)
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, sigma(2*m)*x^m/m)+x*O(x^n)), n)}
(PARI) x='x+O('x^66); Vec(eta(x^2)/eta(x)^3) \\ Joerg Arndt, Dec 05 2010]
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 05 2010
STATUS
editing