editing
approved
editing
approved
G.f.: A(x) = Product_{n>=1} (1 - x^(2*n))/(1 - x^n)^3 follow follows directly from the above formula by Joerg Arndt. - Paul D. Hanna, Dec 07 2018
approved
editing
editing
approved
G.f.: A(x) = Product_{n>=1} (1 - x^(2*n))/(1 - x^n)^3 follow directly from the above formula by Joerg Arndt. - Paul D. Hanna, Dec 07 2018
approved
editing
proposed
approved
editing
proposed
Number of partitions of n where there are 2 kinds of even parts and 3 kinds of odd parts. - Ilya Gutkovskiy, Jan 17 2018
approved
editing
proposed
approved
editing
proposed
G.f.: A(x) = E(x^2)/E(x)^3 where E(x)=prod(Product_{n>=1, } (1 - x^n). [_- _Joerg Arndt_, Dec 05 2010]
Conjecture: exp( sum(Sum_{n>=1, } sigma(s*n)*x^n/n) ) == prod( Product_{d divides |s, } eta(x^d)^(-moebius(d)*sigma(s/d)) ). [_- _Joerg Arndt_, Dec 05 2010]
log(A(x)) = 3*x + 7*x^2/2 + 12*x^3/3 + 15*x^4/4 + 18*x^5/5 + 28*x^6/6 + 24*x^7/7 + 31*x^8/8 + ... + sigma(2n)*x^n/n + ...
proposed
editing