G. C. Greubel, <a href="/A166556/b166556_1.txt">Rows n = 0..100 of the triangle, flattened</a>
G. C. Greubel, <a href="/A166556/b166556_1.txt">Rows n = 0..100 of the triangle, flattened</a>
reviewed
approved
proposed
reviewed
editing
proposed
G. C. Greubel, <a href="/A166556/b166556_1.txt">Rows n = 0..100 of the triangle, flattened</a>
Sum_{k=0..n} T(n, k0) = A006046A000027(n+1). (End)
T(n, 1) = A004526(n+1).
T(n, 2) = A004524(n+1).
T(2*n, n) = A080100(n).
Sum_{k=0..n} T(n, k) = A006046(n+1).
Sum_{k=0..n} (-1)^k*T(n, k) = (1/2)*( (1+(-1)^n))*A006046((n+4)/2) + (1-(-1)^n)*A006046((n+3)/2) ).
Sum_{k=0..floor(n/2)} T(n-k, k) = A007729(n). (End)
A166556[n_, k_]:= Sum[Mod[Binomial[j, k], 2], {j, k, n}];
Table[A166556[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Dec 02 2024 *)
(Magma)
A166556:= func< n, k | (&+[(Binomial(j, k) mod 2): j in [k..n]]) >;
[A166556(n, k): k in [0..n], n in [0..15]]; // G. C. Greubel, Dec 02 2024
(Python)
def A166556(n, k): return sum(binomial(j, k)%2 for j in range(k, n+1))
print(flatten([[A166556(n, k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Dec 02 2024
From G. C. Greubel, Dec 02 2024: (Start)
T(n, k) = Sum_{j=k..n} (binomial(j,k) mod 2).
Sum_{k=0..n} T(n, k) = A006046(n+1). (End)
. 1;
. 2, 1;
. 3, 1, 1;
. 4, 2, 2, 1;
. 5, 2, 2, 1, 1;
. 6, 3, 2, 1, 2, 1;
. 7, 3, 3, 1, 3, 1, 1;
. 8, 4, 4, 2, 4, 2, 2, 1;
. 9, 4, 4, 2, 4, 2, 2, 1, 1;
10, 5, 4, 2, 4, 2, 2, 1, 2, 1;
11, 5, 5, 2, 4, 2, 2, 1, 3, 1, 1;
12, 6, 6, 3, 4, 2, 2, 1, 4, 2, 2, 1;
13, 6, 6, 3, 5, 2, 2, 1, 5, 2, 2, 1, 1;
...
approved
editing
editing
approved
proposed
approved
editing
proposed