[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Revision History for A164587 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
a(n) = 2*a(n - 2) for n > 2; a(1) = 1, a(2) = 8.
(history; published version)
#9 by Ray Chandler at Fri Jun 30 01:04:42 EDT 2023
STATUS

editing

approved

#8 by Ray Chandler at Fri Jun 30 01:04:39 EDT 2023
LINKS

<a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (0, 2).

STATUS

approved

editing

#7 by Charles R Greathouse IV at Thu Sep 08 08:45:47 EDT 2022
PROG

(MAGMAMagma) [ n le 2 select 7*n-6 else 2*Self(n-2): n in [1..41] ];

Discussion
Thu Sep 08
08:45
OEIS Server: https://oeis.org/edit/global/2944
#6 by Joerg Arndt at Sun Aug 13 02:27:39 EDT 2017
STATUS

reviewed

approved

#5 by Michel Marcus at Sat Aug 12 15:54:15 EDT 2017
STATUS

proposed

reviewed

#4 by G. C. Greubel at Sat Aug 12 15:35:57 EDT 2017
STATUS

editing

proposed

#3 by G. C. Greubel at Sat Aug 12 15:35:38 EDT 2017
LINKS

G. C. Greubel, <a href="/A164587/b164587.txt">Table of n, a(n) for n = 1..1000</a>

FORMULA

a(n) = (5 + 3*(-1)^n)*2^(1/4*(2*n -5 +(-1)^n)/4).

E.g.f.: 4*cosh(sqrt(2)*x) + (1/sqrt(2))*sinh(sqrt(2)*x) - 4. - G. C. Greubel, Aug 12 2017

MATHEMATICA

CoefficientList[Series[(1 - x)/(1 - 10*x + 17*x^2), {x, 0, 50}], x] (* G. C. Greubel, Aug 12 2017 *)

PROG

(PARI) x='x+O('x^50); Vec(x*(1+8*x)/(1-2*x^2)) \\ G. C. Greubel, Aug 12 2017

STATUS

approved

editing

#2 by Russ Cox at Fri Mar 30 17:28:03 EDT 2012
AUTHOR

_Klaus Brockhaus (klaus-brockhaus(AT)t-online.de), _, Aug 17 2009

Discussion
Fri Mar 30
17:28
OEIS Server: https://oeis.org/edit/global/145
#1 by N. J. A. Sloane at Tue Jun 01 03:00:00 EDT 2010
NAME

a(n) = 2*a(n - 2) for n > 2; a(1) = 1, a(2) = 8.

DATA

1, 8, 2, 16, 4, 32, 8, 64, 16, 128, 32, 256, 64, 512, 128, 1024, 256, 2048, 512, 4096, 1024, 8192, 2048, 16384, 4096, 32768, 8192, 65536, 16384, 131072, 32768, 262144, 65536, 524288, 131072, 1048576, 262144, 2097152, 524288, 4194304, 1048576

OFFSET

1,2

COMMENTS

Interleaving of A000079 and A000079 without initial terms 1, 2, 4.

Binomial transform is A048696. Second binomial transform is A164298.

FORMULA

a(n) = (5+3*(-1)^n)*2^(1/4*(2*n-5+(-1)^n)).

G.f.: x*(1+8*x)/(1-2*x^2).

PROG

(MAGMA) [ n le 2 select 7*n-6 else 2*Self(n-2): n in [1..41] ];

CROSSREFS

Equals A112032 without initial term 4.

Cf. A000079 (powers of 2), A048696, A164298.

KEYWORD

nonn

AUTHOR

Klaus Brockhaus (klaus-brockhaus(AT)t-online.de), Aug 17 2009

STATUS

approved