Eric Weisstein's World of Mathematics, <a href="httphttps://mathworld.wolfram.com/PrimeProducts.html">Prime Products</a>
Eric Weisstein's World of Mathematics, <a href="httphttps://mathworld.wolfram.com/PrimeProducts.html">Prime Products</a>
editing
approved
With[{nn=30}, Round[#[[1]]/#[[2]]]&/@Thread[{FoldList[Times, Prime[ Range[ nn]]], Range[nn]!}]] (* Harvey P. Dale, Apr 06 2019 *)
approved
editing
proposed
approved
editing
proposed
editing
proposed
2, 3, 5, 9, 19, 42, 101, 241, 615, 1783, 5024, 15492, 48860, 150069, 470216, 1557591, 5405759, 18319515, 64600395, 229331403, 797199638, 2862671427, 10330509932, 38308974332, 148638820408, 577404648509, 2202691807275, 8417429406373, 31637924320505, 119169514940569
G. C. Greubel, <a href="/A123389/b123389.txt">Table of n, a(n) for n = 1..1000</a>
Table[Round[Product[Prime[k], {k, 1, n}]/n!], {n, 1, 50}] (* G. C. Greubel, Oct 25 2017 *)
(PARI) for(n=1, 50, print1(round(prod(k=1, n, prime(k))/n!), ", ")) \\ G. C. Greubel, Oct 25 2017
Terms a(18) onward added by G. C. Greubel, Oct 25 2017
approved
editing
Eric Weisstein, Eric W. 's World of Mathematics, <a href="http://mathworld.wolfram.com/PrimeProducts.html">Prime Products</a>
easy,nonn,new
Ratio of each term of the primorial function to the corresponding term of the factorial function (rounded to nearest integer).
2, 3, 5, 9, 19, 42, 101, 241, 615, 1783, 5024, 15492, 48860, 150069, 470216, 1557591, 5405759
1,1
Shows how the primorial function grows in comparison to the factorial function.
Weisstein, Eric W. <a href="http://mathworld.wolfram.com/PrimeProducts.html">Prime Products</a>
a(n) = round(Product(Prime(k),k=1,n)/Factorial(n))
a(5)= round((2*3*5*7*11)/(1*2*3*4*5)) = round(2310/120) = round(19.25) = 19
Cf. A002110.
easy,nonn
Mitch Cervinka (puritan(AT)toast.net), Oct 13 2006
approved