proposed
approved
proposed
approved
editing
proposed
B. Bruno Berselli, A description of the recursive method in Formula lines (first formula): website <a href="http://www.lanostra-matematica.org/2008/12/sequenze-numeriche-e-procedimenti.html">Matem@ticamente</a> (in Italian).
a(n) = (-1)*Sum_{j=1..12} j*sStirling1(n+1,n+1-j)*SStirling2(n+12-j,n), where s(n,k) and S(n,k) are the Stirling numbers of the first kind and the second kind, respectively. - Mircea Merca, Jan 25 2014
approved
editing
(MAGMAMagma) [(&+[j^12: j in [0..n]]): j in [0..30]]; // G. C. Greubel, Jul 21 2021
proposed
approved
editing
proposed
editing
proposed
a(n) = n*A123095(n) - sum(Sum_{i=0..n-1, } A123095(i)). - Bruno Berselli, Apr 27 2010
a(n) =-sum (-1)*Sum_{j=1..12, } j*s(n+1,n+1-j)*S(n+12-j,n)), , where s(n,k) and S(n,k) are the Stirling numbers of the first kind and the second kind, respectively. - Mircea Merca, Jan 25 2014
lst={}; s=0; Do[s=s+n^12; AppendTo[lst, s], {n, 10^2}]; lst..or..Table[Sum[k^12, {k, 1, n}], {n, 0, 10030}] (* Vladimir Joseph Stephan Orlovsky, Aug 14 2008 *)
(Sage) [bernoulli_polynomial(n, 13)/13 for n in range(1, 1930)] # Zerinvary Lajos, May 17 2009
(MAGMA) [(&+[j^12: j in [0..n]]): j in [0..30]]; // G. C. Greubel, Jul 21 2021
approved
editing