editing
approved
editing
approved
proposed
approved
editing
proposed
The Heinz numbers of these partitions are given by A325131. - Gus Wiseman, Apr 02 2019
From Gus Wiseman, Apr 02 2019: (Start)
The a(2) = 2 through a(9) = 7 partitions:
(2) (3) (4) (5) (6) (7) (8) (9)
(11) (111) (1111) (32) (33) (43) (44) (54)
(11111) (42) (52) (53) (63)
(222) (1111111) (62) (72)
(111111) (2222) (432)
(3311) (222111)
(11111111) (111111111)
(End)
Table[Length[Select[IntegerPartitions[n], Intersection[#, Length/@Split[#]]=={}&]], {n, 0, 30}] (* Gus Wiseman, Apr 02 2019 *)
approved
editing
reviewed
approved
proposed
reviewed
editing
proposed
b[n_, i_, p_, m_] := b[n, i, p, m] = If[n == 0, 1, If[i<1, 0, b[n, i-1, p, Select[m, #<i&]] + Sum[If[i == j || MemberQ[m, i] || MemberQ[p, j], 0, b[n-i*j, i-1, Select[ p ~Union~ {i}, # <= n-i*j&], Select[m ~Union~ {j}, #<i&]]], {j, 1, n/i}]]]; a[n_] := b[n, n, {}, {}]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 05 2017, after Alois P. Heinz *)
approved
editing
editing
approved