[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A325130
Numbers in whose prime factorization the exponent of prime(k) is not equal to k for any prime index k.
10
1, 3, 4, 5, 7, 8, 11, 12, 13, 15, 16, 17, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 35, 37, 39, 40, 41, 43, 44, 47, 48, 49, 51, 52, 53, 55, 56, 57, 59, 60, 61, 64, 65, 67, 68, 69, 71, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 87, 88, 89, 91, 92, 93, 95, 96
OFFSET
1,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of the integer partitions counted by A276429.
The asymptotic density of this sequence is Product_{k>=1} (1 - 1/prime(k)^k + 1/prime(k)^(k+1)) = 0.68974964705635552968... - Amiram Eldar, Jan 09 2021
LINKS
EXAMPLE
The sequence of terms together with their prime indices begins:
1: {}
3: {2}
4: {1,1}
5: {3}
7: {4}
8: {1,1,1}
11: {5}
12: {1,1,2}
13: {6}
15: {2,3}
16: {1,1,1,1}
17: {7}
19: {8}
20: {1,1,3}
21: {2,4}
23: {9}
24: {1,1,1,2}
25: {3,3}
27: {2,2,2}
28: {1,1,4}
MAPLE
q:= n-> andmap(i-> numtheory[pi](i[1])<>i[2], ifactors(n)[2]):
a:= proc(n) option remember; local k; for k from 1+
`if`(n=1, 0, a(n-1)) while not q(k) do od; k
end:
seq(a(n), n=1..80); # Alois P. Heinz, Oct 28 2019
MATHEMATICA
Select[Range[100], And@@Cases[If[#==1, {}, FactorInteger[#]], {p_, k_}:>k!=PrimePi[p]]&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 01 2019
STATUS
approved