reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
1, 2, 8, 27, 79, 209, 512, 1183, 2604, 5504, 11240, 22277, 43003, 81098, 149769, 271404, 483439, 847681, 1464999, 2498258, 4207764, 7005688, 11538936, 18814423, 30387207, 48641220, 77205488, 121567834, 189974638, 294742961, 454164484, 695254782, 1057704607
1, seq(coeff(convert(series(1+add(-(-1)^k*x^(k*(k+1)/2), k=1..100)/(mul(1-x^k, k=1..100))^2, x, 100), polynom), x, 2*n), n=10..45); # (C. Ronaldo)
proposed
editing
editing
proposed
(Magma)
m:=200;
R<x>:=PowerSeriesRing(Integers(), m);
b:=Coefficients(R!( 1 + (&+[ x^n*(1-x^n)/(&*[(1-x^j)^2: j in [1..n]]): n in [1..m+2]]) ));
A100505:= func< n | b[2*n+1] >;
[A100505(n): n in [0..80]]; // G. C. Greubel, Apr 03 2023
(SageMath)
@CachedFunction
def b(n, k): # Indranil Ghosh's code of A001523
if k>n: return 0
if n%k==0: x=1
else: x=0
return x + sum(b(n-k*j, k+1)*(j+1) for j in range(n//k + 1))
def A100505(n): return 1 if n==0 else b(2*n, 1)
[A100505(n) for n in range(81)] # G. C. Greubel, Apr 03 2023
approved
editing
proposed
approved
editing
proposed
max = 70; s = 1 + Sum[(-1)^(k+1)*q^(k*(k+1)/2), {k, 1, Sqrt[2 max] // Ceiling}]/QPochhammer[q]^2 + O[q]^max // Normal; Partition[(List @@ s) /. q -> 1, 2][[All, 1]] (* Jean-François Alcover, Apr 04 2017 *)
approved
editing