[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Revision History for A081579 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Pascal-(1,4,1) array.
(history; published version)
#34 by Charles R Greathouse IV at Thu Sep 08 08:45:09 EDT 2022
PROG

(MAGMAMagma)

Discussion
Thu Sep 08
08:45
OEIS Server: https://oeis.org/edit/global/2944
#33 by N. J. A. Sloane at Sat May 29 20:05:34 EDT 2021
STATUS

proposed

approved

#32 by G. C. Greubel at Thu May 27 20:37:57 EDT 2021
STATUS

editing

proposed

#31 by G. C. Greubel at Thu May 27 20:37:35 EDT 2021
FORMULA

From Philippe Deléham, Mar 15 2014: (Start)

As a number triangle, this is the Riordan array (1/(1-x), x*(1+4*x)/(1-x)). It has row sums A063727(n). - _Philippe Deléham_, Mar 15 2014

Sum_{k=0..n} T(n, k) = A063727(n). (End)

T(n, k, m) = Sum_{j=0..n-k} binomial(k,j)*binomial(n-j,k)*m^j, for m = 4. (End)

Sum_{k=0..n} T(n, k, 4) = A063727(n). (End)

MATHEMATICA

Table[Hypergeometric2F1[-k, k-n, 1, 5], {n, 0, 1012}, {k, 0, n}]//Flatten (* Jean-François Alcover, May 24 2013 *)

CROSSREFS
STATUS

reviewed

editing

Discussion
Thu May 27
20:37
G. C. Greubel: Duplicate formula removed.
#30 by Joerg Arndt at Wed May 26 03:30:02 EDT 2021
STATUS

proposed

reviewed

#29 by G. C. Greubel at Wed May 26 03:27:17 EDT 2021
STATUS

editing

proposed

#28 by G. C. Greubel at Wed May 26 03:26:56 EDT 2021
DATA

1, 1, 1, 1, 6, 1, 1, 11, 11, 1, 1, 16, 46, 16, 1, 1, 21, 106, 106, 21, 1, 1, 26, 191, 396, 191, 26, 1, 1, 31, 301, 1011, 1011, 301, 31, 1, 1, 36, 436, 2076, 3606, 2076, 436, 36, 1, 1, 41, 596, 3716, 9726, 9726, 3716, 596, 41, 1, 1, 46, 781, 6056, 21746, 33876, 21746, 6056, 781, 46, 1

FORMULA

Square array T(n, k) defined by T(n, 0) = T(0, k) = 1, T(n, k) = T(n, k-1) +4T 4*T(n-1, k-1) + T(n-1, k). Rows are the expansions of (1+4x)^k/(1-x)^(k+1).

Rows are the expansions of (1+4*x)^k/(1-x)^(k+1).

From G. C. Greubel, May 26 2021: (Start)

T(n, k, m) = Hypergeometric2F1([-k, k-n], [1], m+1), for m = 4.

T(n, k, m) = Sum_{j=0..n-k} binomial(k,j)*binomial(n-j,k)*m^j, for m = 4.

Sum_{k=0..n} T(n, k, 4) = A063727(n). (End)

EXAMPLE

Rows start

Square array begins as:

1 , 1 , 1 , 1 , 1 , ... A000012;

1 , 6 , 11 , 16 , 21 , ... A016861;

1 , 11 , 46 , 106 , 191 , ... A081587;

1 , 16 , 106 , 396 , 1011 , ... A081588;

1 , 21 , 191 , 1011 , 3606 , ...

1;

1, 1;

1, 6, 1;

1, 11, 11, 1;

1, 16, 46, 16, 1;

1, 21, 106, 106, 21, 1;

1, 26, 191, 396, 191, 26, 1;

1, 31, 301, 1011, 1011, 301, 31, 1;

1, 36, 436, 2076, 3606, 2076, 436, 36, 1;

1, 41, 596, 3716, 9726, 9726, 3716, 596, 41, 1;

1, 46, 781, 6056, 21746, 33876, 21746, 6056, 781, 46, 1; - Philippe Deléham, Mar 15 2014

MATHEMATICA

Table[ Hypergeometric2F1[-k, k-n, 1, 5], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 24 2013 *)

PROG

(MAGMA)

A081579:= func< n, k, q | (&+[Binomial(k, j)*Binomial(n-j, k)*q^j: j in [0..n-k]]) >;

[A081579(n, k, 4): k in [0..n], n in [0..12]]; // G. C. Greubel, May 26 2021

(Sage) flatten([[hypergeometric([-k, k-n], [1], 5).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 26 2021

STATUS

approved

editing

#27 by Bruno Berselli at Sun Mar 05 17:03:12 EST 2017
STATUS

proposed

approved

#26 by Peter Bala at Sun Mar 05 16:44:01 EST 2017
STATUS

editing

proposed

#25 by Peter Bala at Sun Mar 05 07:58:14 EST 2017
CROSSREFS

Cf. Pascal (1,m,1) array: A123562 (m = -3), A098593 (m = -2), A000012 (m = -1), A007318 (m = 0), A008288 (m = 1), A081577 (m = 2), A081578 (m = 3), A081580 (m = 5), A081581 (m = 6), A081582 (m = 7), A143683 (m = 8).