[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Revision History for A024037 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
a(n) = 4^n - n.
(history; published version)
#38 by Joerg Arndt at Wed Sep 11 10:57:34 EDT 2024
STATUS

reviewed

approved

#37 by Michel Marcus at Wed Sep 11 10:42:44 EDT 2024
STATUS

proposed

reviewed

#36 by Robert C. Lyons at Wed Sep 11 10:10:46 EDT 2024
STATUS

editing

proposed

#35 by Robert C. Lyons at Wed Sep 11 10:10:43 EDT 2024
PROG

(Magma) [4^n - n: n in [0..35]]: ; // Vincenzo Librandi, May 13 2011

STATUS

approved

editing

#34 by Michael De Vlieger at Tue Sep 10 11:04:40 EDT 2024
STATUS

reviewed

approved

#33 by Michel Marcus at Tue Sep 10 09:27:49 EDT 2024
STATUS

proposed

reviewed

#32 by Elmo R. Oliveira at Tue Sep 10 08:56:26 EDT 2024
STATUS

editing

proposed

#31 by Elmo R. Oliveira at Tue Sep 10 08:55:47 EDT 2024
DATA

1, 3, 14, 61, 252, 1019, 4090, 16377, 65528, 262135, 1048566, 4194293, 16777204, 67108851, 268435442, 1073741809, 4294967280, 17179869167, 68719476718, 274877906925, 1099511627756, 4398046511083, 17592186044394, 70368744177641, 281474976710632, 1125899906842599

FORMULA

From Vincenzo Librandi, Jun 16 2013: (Start)

G.f.: (1 - 3*x + 5*x^2)/((1 - 4*x)*(1 - x)^2). - _Vincenzo Librandi_, Jun 16 2013

a(n) = 6*a(n-1) - 9*a(n-2) + 4*a(n-3). - _Vincenzo Librandi_, Jun 16 2013(End)

E.g.f.: exp(x)*(exp(3*x) - x). - Elmo R. Oliveira, Sep 10 2024

CROSSREFS

Cf. numbers of the form k^n - n: A000325 (k=2), A024024 (k=3), this sequence (k=4), A024050 (k=5), A024063 (k=6), A024076 (k=7), A024089 (k=8), A024102 (k=9), A024115 (k=10), A024128 (k=11), A024141 (k=12).

STATUS

approved

editing

#30 by Charles R Greathouse IV at Thu Sep 08 08:44:48 EDT 2022
PROG

(MAGMAMagma) [4^n - n: n in [0..35]]: // Vincenzo Librandi, May 13 2011

(MAGMAMagma) I:=[1, 3, 14]; [n le 3 select I[n] else 6*Self(n-1)-9*Self(n-2)+4*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 16 2013

Discussion
Thu Sep 08
08:44
OEIS Server: https://oeis.org/edit/global/2944
#29 by Alois P. Heinz at Tue Aug 04 13:36:03 EDT 2020
STATUS

proposed

approved