[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A024076
a(n) = 7^n - n.
10
1, 6, 47, 340, 2397, 16802, 117643, 823536, 5764793, 40353598, 282475239, 1977326732, 13841287189, 96889010394, 678223072835, 4747561509928, 33232930569585, 232630513987190, 1628413597910431, 11398895185373124, 79792266297611981, 558545864083283986, 3909821048582988027
OFFSET
0,2
FORMULA
From Vincenzo Librandi, Jun 16 2013: (Start)
G.f.: (1-3*x+8*x^2)/((1-7*x)*(1-x)^2).
a(n) = 9*a(n-1) - 15*a(n-2) + 7*a(n-3). (End)
E.g.f.: exp(x)*(exp(6*x) - x). - Elmo R. Oliveira, Sep 10 2024
MAPLE
A024076:=n->7^n-n; seq(A024076(n), n=0..30); # Wesley Ivan Hurt, Jan 24 2014
MATHEMATICA
Table[7^n - n, {n, 0, 30}] (* or *) CoefficientList[Series[(1 - 3 x + 8 x^2) / ((1 - 7 x) (1 - x)^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jun 16 2013 *)
PROG
(Magma) [7^n-n: n in [0..25]]; // Vincenzo Librandi, Jul 03 2011
(Magma) I:=[1, 6, 47]; [n le 3 select I[n] else 9*Self(n-1)-15*Self(n-2)+7*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 16 2013
(PARI) a(n)=7^n-n \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
Cf. numbers of the form k^n - n: A000325 (k=2), A024024 (k=3), A024037 (k=4), A024050 (k=5), A024063 (k=6), this sequence (k=7), A024089 (k=8), A024102 (k=9), A024115 (k=10), A024128 (k=11), A024141 (k=12).
Cf. A198688 (first differences).
Sequence in context: A160609 A267203 A353098 * A015553 A291028 A341927
KEYWORD
nonn,easy
STATUS
approved