editing
approved
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
editing
approved
R. W. Robinson and Alois P. Heinz, <a href="/A001499/b001499.txt">Table of n, a(n) for n = 0..200</a> (terms n = 0..48 from R. W. Robinson)
approved
editing
reviewed
approved
proposed
reviewed
editing
proposed
limLimit_(n->infinity) sqrt(n)*a(n)/(n!)^2 = A096411 [Kuczma]. - R. J. Mathar, Sep 21 2007
a(n) = 4^(-n) * n!^2 * sum(Sum_{i=0..n, } (-2)^i * (2*n - 2*i)! / (i!*(n-i)!^2)) ). - Shanzhen Gao, Feb 15 2010
approved
editing
reviewed
approved
proposed
reviewed
editing
proposed
Gao, Shanzhen, Gao and Matheis, Kenneth, Matheis, Closed formulas and integer sequences arising from the enumeration of (0,1)-matrices with row sum two and some constant column sums. In Proceedings of the Forty-First Southeastern International Conference on Combinatorics, Graph Theory and Computing. Congr. Numer. 202 (2010), 45-53.
P. Paul Barry, <a href="http://dx.doi.org/10.1155/2013/657806">On the Connection Coefficients of the Chebyshev-Boubaker polynomials</a>, The Scientific World Journal, Volume 2013 (2013), Article ID 657806.
Rui-Li Liu, and Feng-Zhen Zhao, <a href="https://www.emis.de/journals/JIS/VOL21/Liu/liu19.html">New Sufficient Conditions for Log-Balancedness, With Applications to Combinatorial Sequences</a>, J. Int. Seq., Vol. 21 (2018), Article 18.5.7.
Bo-Ying Wang, and Fuzhen Zhang, <a href="http://dx.doi.org/10.1016/S0012-365X(97)00197-0">On the precise number of (0,1)-matrices in A(R,S)</a>, Discrete Math. 187 (1998), no. 1-3, 211--220. MR1630720 (99f:05010). - From N. J. A. Sloane, Jun 07 2012
proposed
editing