[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001499
Number of n X n matrices with exactly 2 1's in each row and column, other entries 0.
(Formerly M4286 N1792)
22
1, 0, 1, 6, 90, 2040, 67950, 3110940, 187530840, 14398171200, 1371785398200, 158815387962000, 21959547410077200, 3574340599104475200, 676508133623135814000, 147320988741542099484000, 36574751938491748341360000, 10268902998771351157327104000
OFFSET
0,4
COMMENTS
Or, number of labeled 2-regular relations of order n.
Also number of ways to arrange 2n rooks on an n X n chessboard, with no more than 2 rooks in each row and column (no 3 in a line). - Vaclav Kotesovec, Aug 03 2013
REFERENCES
R. Bricard, L'Intermédiaire des Mathématiciens, 8 (1901), 312-313.
L. Comtet, Advanced Combinatorics, Reidel, 1974, Sect. 6.3 Multipermutations, pp. 235-236, P(n,2), bipermutations.
L. Erlebach and O. Ruehr, Problem 79-5, SIAM Review. Solution by D. E. Knuth. Reprinted in Problems in Applied Mathematics, ed. M. Klamkin, SIAM, 1990, p. 350.
Shanzhen Gao and Kenneth Matheis, Closed formulas and integer sequences arising from the enumeration of (0,1)-matrices with row sum two and some constant column sums. In Proceedings of the Forty-First Southeastern International Conference on Combinatorics, Graph Theory and Computing. Congr. Numer. 202 (2010), 45-53.
J. T. Lewis, Maximal L-free subsets of a squarefree array, Congressus Numerantium, 141 (1999), 151-155.
R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Cor. 5.5.11 (b).
M. L. Stein and P. R. Stein, Enumeration of Stochastic Matrices with Integer Elements. Report LA-4434, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, Jun 1970.
J. H. van Lint and R. M. Wilson, A Course in Combinatorics (Cambridge University Press, Cambridge, 1992), pp. 152-153. [The second edition is said to be a better reference.]
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..200 (terms n = 0..48 from R. W. Robinson)
H. Anand, V. C. Dumir and H. Gupta, A combinatorial distribution problem, Duke Math. J., 33 (1996), 757-769.
Paul Barry, On the Connection Coefficients of the Chebyshev-Boubaker polynomials, The Scientific World Journal, Volume 2013 (2013), Article ID 657806.
L. Carlitz, Enumeration of symmetric arrays, Duke Math. J., Vol. 33 (1966), 771-782.
Sally Cockburn and Joshua Lesperance, Deranged Socks, Mathematics Magazine, Vol. 86, no. 2, April 2013, pp. 97-109.
L. Erlebach and O. Ruehr, Problem 79-5, SIAM Review, Vol. 21, No. 1 (Jan., 1979), p. 140. Solution by D. E. Knuth, SIAM Review, Vol. 22, No. 1 (Jan., 1980), pp. 101-102.
M. E. Kuczma, 0-1-Matrices with Line-Sums Equal to 2, Am. Math. Month. 99 (1992) 959-961, E3419.
Rui-Li Liu and Feng-Zhen Zhao, New Sufficient Conditions for Log-Balancedness, With Applications to Combinatorial Sequences, J. Int. Seq., Vol. 21 (2018), Article 18.5.7.
M. L. Stein and P. R. Stein, Enumeration of Stochastic Matrices with Integer Elements, Report LA-4434, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, Jun 1970. [Annotated scanned copy]
Bo-Ying Wang and Fuzhen Zhang, On the precise number of (0,1)-matrices in A(R,S), Discrete Math. 187 (1998), no. 1-3, 211--220. MR1630720 (99f:05010). - From N. J. A. Sloane, Jun 07 2012
FORMULA
a(n) = (n! (n-1) Gamma(n-1/2) / Gamma(1/2) ) * 1F1[2-n; 3/2-n; -1/2] [Erlebach and Ruehr]. This representation is exact, asymptotic and convergent.
D-finite with recurrence 2*a(n) -2*n*(n-1)*a(n-1) -n*(n-1)^2*a(n-2)=0.
a(n) ~ 2 sqrt(Pi) n^(2n + 1/2) e^(-2n - 1/2) [Knuth]
a(n) = (1/2)*n*(n-1)^2 * ( (2*n-3)*a(n-2) + (n-2)^2*a(n-3) ) (from Anand et al.)
Sum_{n >= 0} a(n)*x^n/(n!)^2 = exp(-x/2)/sqrt(1-x); a(n) = n(n-1)/2 [ 2 a(n-1) + (n-1) a(n-2) ] (Bricard)
b_n = a_n/n! satisfies b_n = (n-1)(b_{n-1} + b_{n-2}/2); e.g.f. for {b_n} and for derangements (A000166) are related by D(x) = B(x)^2.
Limit_(n->infinity) sqrt(n)*a(n)/(n!)^2 = A096411 [Kuczma]. - R. J. Mathar, Sep 21 2007
a(n) = 4^(-n) * n!^2 * Sum_{i=0..n} (-2)^i * (2*n - 2*i)! / (i!*(n-i)!^2). - Shanzhen Gao, Feb 15 2010
MATHEMATICA
a[n_] := (n-1)*n!*Gamma[n-1/2]*Hypergeometric1F1[2-n, 3/2-n, -1/2]/Sqrt[Pi]; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Oct 06 2011, after first formula *)
PROG
(PARI) a(n)=if(n<2, n==0, (n^2-n)*(a(n-1)+(n-1)/2*a(n-2)))
(PARI) seq(n)={Vec(serlaplace(serlaplace(exp(-x/2 + O(x*x^n))/sqrt(1-x + O(x*x^n)))))}; \\ Andrew Howroyd, Sep 09 2018
(Haskell)
a001499 n = a001499_list !! n
a001499_list = 1 : 0 : 1 : zipWith (*) (drop 2 a002411_list)
(zipWith (+) (zipWith (*) [3, 5 ..] $ tail a001499_list)
(zipWith (*) (tail a000290_list) a001499_list))
-- Reinhard Zumkeller, Jun 02 2013
CROSSREFS
Cf. A000681, A053871, A123544 (connected relations), A000986 (symmetric matrices), A007107 (traceless matrices).
Cf. A001501. Column 2 of A008300. Row sums of A284989.
Sequence in context: A002896 A266734 A004996 * A147630 A221097 A177584
KEYWORD
nonn,nice,easy
STATUS
approved