R. P. Stanley, <a href="https://web.archive.org/web/2024*/https://www
R. P. Stanley, <a href="https://web.archive.org/web/2024*/https://www
R. P. Stanley, <a href="httphttps://www.fq.math.ca/Scanned/13-3/stanley.pdf">A Fibonacci lattice</a>, Fib. Quart., 13 (1975), 215-232.
reviewed
approved
proposed
reviewed
editing
proposed
G. C. Greubel, <a href="/A005407/b005407.txt">Table of n, a(n) for n = 1..1000</a>
(Magma) R<x>:=PowerSeriesRing(Integers(), 50); Coefficients(R!( -1 + (1-x)^6/(&*[1-x-x^j+x^(2*j+1): j in [1..6]]) )); // G. C. Greubel, Nov 19 2022
(SageMath)
def A005407_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( -1 + (1-x)^6/product(1-x-x^j+x^(2*j+1) for j in (1..6)) ).list()
a=A005407_list(50); a[1:] # G. C. Greubel, Nov 19 2022
approved
editing
proposed
approved
editing
proposed
G.f.: (1-x)^6/Product_{i=1..6} (1-x-x^i+x^(1+2*i), i=1..6) - 1. - Emeric Deutsch, Dec 19 2004
approved
editing
editing
approved