OFFSET
1,8
COMMENTS
An ordered factorization of n is a sequence of positive integers > 1 with product n.
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).
LINKS
EXAMPLE
The a(n) ordered factorizations for n = 2, 8, 12, 16, 24, 32, 36, 48:
2 8 12 16 24 32 36 48
2*2*2 2*2*3 2*2*4 2*2*6 2*2*8 2*2*9 2*4*6
3*2*2 2*4*2 3*2*4 2*4*4 2*3*6 3*2*8
4*2*2 4*2*3 4*2*4 2*6*3 3*4*4
6*2*2 4*4*2 3*2*6 4*2*6
8*2*2 3*3*4 4*4*3
2*2*2*2*2 3*6*2 6*2*4
4*3*3 6*4*2
6*2*3 8*2*3
6*3*2 12*2*2
9*2*2 2*2*12
2*2*2*2*3
2*2*3*2*2
3*2*2*2*2
MATHEMATICA
ordfacs[n_]:=If[n<=1, {{}}, Join@@Table[Prepend[#, d]&/@ordfacs[n/d], {d, Rest[Divisors[n]]}]];
altprod[q_]:=Product[q[[i]]^(-1)^(i-1), {i, Length[q]}];
Table[Length[Select[ordfacs[n], OddQ[Length[#]]&&IntegerQ[altprod[#]]&]], {n, 100}]
PROG
(PARI) A347049(n, m=n, ap=1, e=0) = if(1==n, (e%2) && 1==denominator(ap), sumdiv(n, d, if(d>1, A347049(n/d, d, ap * d^((-1)^e), 1-e)))); \\ Antti Karttunen, Jul 28 2024
CROSSREFS
Positions of 2's appear to be A030078.
Positions of 3's appear to be A054753.
Positions of 1's appear to be A167207.
The even-length version is A347048.
The unordered version is A347441, with same reverse version.
Allowing any length gives A347463.
A347439 = factorizations with integer reciprocal alternating product.
A347457 lists Heinz numbers of partitions with integer alternating product.
A347460 counts possible alternating products of factorizations.
A347708 counts possible alternating products of odd-length factorizations.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 10 2021
EXTENSIONS
Data section extended up to a(100) by Antti Karttunen, Jul 28 2024
STATUS
approved