OFFSET
1,8
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..20000
EXAMPLE
The a(n) factorizations for n = 24, 48, 60, 72, 96, 120:
24 48 60 72 96 120
2*2*6 2*3*8 2*5*6 2*4*9 2*6*8 3*5*8
2*3*4 2*4*6 3*4*5 2*6*6 3*4*8 4*5*6
3*4*4 2*2*15 3*3*8 4*4*6 2*2*30
2*2*12 2*3*10 3*4*6 2*2*24 2*3*20
2*2*2*2*3 2*2*18 2*3*16 2*4*15
2*3*12 2*4*12 2*5*12
2*2*2*3*3 2*2*2*2*6 2*6*10
2*2*2*3*4 3*4*10
2*2*2*3*5
MAPLE
g:= proc(n, k, t) option remember; `if`(n>k, 0, t)+
`if`(isprime(n), 0, add(`if`(d>k, 0, g(n/d, d, 1-t)),
d=numtheory[divisors](n) minus {1, n}))
end:
a:= n-> `if`(n<2, 0, g(n$2, 1)):
seq(a(n), n=1..100); # Alois P. Heinz, Dec 30 2020
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
Table[Length[Select[facs[n], OddQ@Length[#]&]], {n, 100}]
CROSSREFS
The case of set partitions (or n squarefree) is A024429.
The case of partitions (or prime powers) is A027193.
The remaining (even-length) factorizations are counted by A339846.
A316439 counts factorizations by product and length.
A340101 counts factorizations into odd factors.
A340102 counts odd-length factorizations into odd factors.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 28 2020
STATUS
approved