[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333599
a(n) = Fibonacci(n) * Fibonacci(n+1) mod Fibonacci(n+2).
6
0, 1, 2, 1, 7, 1, 20, 1, 54, 1, 143, 1, 376, 1, 986, 1, 2583, 1, 6764, 1, 17710, 1, 46367, 1, 121392, 1, 317810, 1, 832039, 1, 2178308, 1, 5702886, 1, 14930351, 1, 39088168, 1, 102334154, 1, 267914295, 1, 701408732, 1, 1836311902, 1, 4807526975, 1, 12586269024
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, d'Ocagne's Identity.
FORMULA
a(2n+1) = 1, and a(2n) = F(2n+2) - 1, and lim(a(2n+2)/a(2n)) = phi^2 by d'Ocagne's identity.
a(n) = F(n) * F(n+1) mod (F(n) + F(n+1)) since F(n+2) := F(n+1) + F(n).
From Colin Barker, Mar 28 2020: (Start)
G.f.: x*(1 + 3*x - x^3) / ((1 + x)*(1 + x - x^2)*(1 - x - x^2)).
a(n) = -a(n-1) + 3*a(n-2) + 3*a(n-3) - a(n-4) - a(n-5) for n>4.
(End)
EXAMPLE
a(0) = 0*1 mod 1 = 0;
a(1) = 1*1 mod 2 = 1;
a(2) = 1*2 mod 3 = 2;
a(3) = 2*3 mod 5 = 1;
a(4) = 3*5 mod 8 = 7.
MATHEMATICA
With[{f = Fibonacci}, Table[Mod[f[n] * f[n+1], f[n+2]], {n, 0, 50}]] (* Amiram Eldar, Mar 28 2020 *)
PROG
(Python)
def a(n):
f1 = 0
f2 = 1
for i in range(n):
f = f1 + f2
f1 = f2
f2 = f
return (f1 * f2) % (f1 + f2)
(PARI) a(n) = if (n % 2, 1, fibonacci(n+2) - 1); \\ Michel Marcus, Mar 29 2020
(PARI) concat(0, Vec(x*(1 + 3*x - x^3) / ((1 + x)*(1 + x - x^2)*(1 - x - x^2)) + O(x^45))) \\ Colin Barker, Mar 29 2020
CROSSREFS
Equals A035508 interleaved with A000012.
Sequence in context: A280691 A092666 A019426 * A335405 A369924 A347800
KEYWORD
nonn,easy
AUTHOR
Adnan Baysal, Mar 28 2020
STATUS
approved