[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A072565
a(n) = prime(n+1)*prime(n+2)+1 mod prime(n), where prime(n) is the n-th prime.
3
0, 0, 3, 4, 2, 12, 13, 3, 3, 17, 30, 25, 13, 41, 26, 49, 17, 0, 25, 17, 61, 41, 2, 8, 25, 13, 25, 13, 73, 27, 41, 49, 25, 121, 17, 73, 61, 41, 73, 49, 25, 121, 13, 25, 29, 90, 193, 25, 13, 41, 49, 25, 161, 73, 73, 49, 17, 61, 25, 25, 241, 253, 25, 13, 73, 281, 97, 121, 13
OFFSET
1,3
REFERENCES
R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer-Verlag, NY, (2002 printing), Research problem 1.85, p. 73.
LINKS
FORMULA
a(n) = A023523(n+1) mod A000040(n). - Michel Marcus, Feb 28 2018
EXAMPLE
a(18) = prime(19)*prime(20)+1 mod prime(18) = 67*71+1 mod 61 = 0.
MAPLE
p:=ithprime; seq((p(n+1)*p(n+2)+1) mod p(n), n=1..70); # Muniru A Asiru, Mar 09 2018
MATHEMATICA
a[n_] := Mod[Prime[n+1] Prime[n+2] + 1, Prime[n]]
Mod[#[[2]]#[[3]]+1, #[[1]]]&/@Partition[Prime[Range[80]], 3, 1] (* Harvey P. Dale, Dec 19 2018 *)
PROG
(PARI) a(n) = (prime(n+1)*prime(n+2) + 1) % prime(n); \\ Michel Marcus, Feb 28 2018
(Magma) [(NthPrime(n+1)*NthPrime(n+2)+1) mod NthPrime(n): n in [1..100]]; // Vincenzo Librandi, Feb 28 2018
(GAP) P:=Filtered([1..1000], IsPrime);;
List([1..70], n->(P[n+1]*P[n+2]+1) mod P[n]); # Muniru A Asiru, Mar 09 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
G. L. Honaker, Jr., Aug 06 2002
EXTENSIONS
Edited by Dean Hickerson and Robert G. Wilson v, Aug 10 2002
STATUS
approved