[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Fibonacci(n) * Fibonacci(n+1) mod Fibonacci(n+2).
6

%I #41 May 22 2020 09:46:41

%S 0,1,2,1,7,1,20,1,54,1,143,1,376,1,986,1,2583,1,6764,1,17710,1,46367,

%T 1,121392,1,317810,1,832039,1,2178308,1,5702886,1,14930351,1,39088168,

%U 1,102334154,1,267914295,1,701408732,1,1836311902,1,4807526975,1,12586269024

%N a(n) = Fibonacci(n) * Fibonacci(n+1) mod Fibonacci(n+2).

%H Colin Barker, <a href="/A333599/b333599.txt">Table of n, a(n) for n = 0..1000</a>

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/dOcagnesIdentity.html">d'Ocagne's Identity</a>.

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (-1,3,3,-1,-1).

%F a(2n+1) = 1, and a(2n) = F(2n+2) - 1, and lim(a(2n+2)/a(2n)) = phi^2 by d'Ocagne's identity.

%F a(n) = F(n) * F(n+1) mod (F(n) + F(n+1)) since F(n+2) := F(n+1) + F(n).

%F From _Colin Barker_, Mar 28 2020: (Start)

%F G.f.: x*(1 + 3*x - x^3) / ((1 + x)*(1 + x - x^2)*(1 - x - x^2)).

%F a(n) = -a(n-1) + 3*a(n-2) + 3*a(n-3) - a(n-4) - a(n-5) for n>4.

%F (End)

%e a(0) = 0*1 mod 1 = 0;

%e a(1) = 1*1 mod 2 = 1;

%e a(2) = 1*2 mod 3 = 2;

%e a(3) = 2*3 mod 5 = 1;

%e a(4) = 3*5 mod 8 = 7.

%t With[{f = Fibonacci}, Table[Mod[f[n] * f[n+1], f[n+2]], {n, 0, 50}]] (* _Amiram Eldar_, Mar 28 2020 *)

%o (Python)

%o def a(n):

%o f1 = 0

%o f2 = 1

%o for i in range(n):

%o f = f1 + f2

%o f1 = f2

%o f2 = f

%o return (f1 * f2) % (f1 + f2)

%o (PARI) a(n) = if (n % 2, 1, fibonacci(n+2) - 1); \\ _Michel Marcus_, Mar 29 2020

%o (PARI) concat(0, Vec(x*(1 + 3*x - x^3) / ((1 + x)*(1 + x - x^2)*(1 - x - x^2)) + O(x^45))) \\ _Colin Barker_, Mar 29 2020

%Y Equals A035508 interleaved with A000012.

%Y Cf. A182126, A000045, A022461, A072565, A022462.

%K nonn,easy

%O 0,3

%A _Adnan Baysal_, Mar 28 2020