[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A195149
Concentric 22-gonal numbers.
15
0, 1, 22, 45, 88, 133, 198, 265, 352, 441, 550, 661, 792, 925, 1078, 1233, 1408, 1585, 1782, 1981, 2200, 2421, 2662, 2905, 3168, 3433, 3718, 4005, 4312, 4621, 4950, 5281, 5632, 5985, 6358, 6733, 7128, 7525, 7942, 8361, 8800, 9241, 9702, 10165, 10648, 11133
OFFSET
0,3
COMMENTS
Sequence found by reading the line from 0, in the direction 0, 22,..., and the same line from 1, in the direction 1, 45,..., in the square spiral whose vertices are the generalized tridecagonal numbers A195313. Main axis, perpendicular to A152740 in the same spiral.
FORMULA
G.f.: -x*(1+20*x+x^2) / ( (1+x)*(x-1)^3 ). - R. J. Mathar, Sep 18 2011
a(n) = (22*n^2+9*(-1)^n-9)/4; a(n) = -a(n-1)+11*n^2-11*n+1. - Vincenzo Librandi, Sep 27 2011
Sum_{n>=1} 1/a(n) = Pi^2/132 + tan(3*Pi/(2*sqrt(11)))*Pi/(6*sqrt(11)). - Amiram Eldar, Jan 17 2023
MAPLE
A195149:=n->(22*n^2+9*(-1)^n-9)/4: seq(A195149(n), n=0..50); # Wesley Ivan Hurt, Jul 07 2014
MATHEMATICA
Table[(22*n^2 + 9*(-1)^n - 9)/4, {n, 0, 50}] (* Wesley Ivan Hurt, Jul 07 2014 *)
PROG
(Magma) [(22*n^2+9*(-1)^n-9)/4: n in [0..50]]; // Vincenzo Librandi, Sep 27 2011
(PARI) a(n)=(22*n^2+9*(-1)^n-9)/4 \\ Charles R Greathouse IV, Sep 24 2015
CROSSREFS
A195323 and A195318 interleaved.
Cf. A032527, A195049, A195058. Column 22 of A195040. - Omar E. Pol, Sep 29 2011
Sequence in context: A041956 A041954 A041952 * A291557 A165309 A041960
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Sep 17 2011
STATUS
approved