OFFSET
0,3
COMMENTS
Concentric octadecagonal numbers or concentric octakaidecagonal numbers.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
FORMULA
G.f.: -x*(1+16*x+x^2) / ( (1+x)*(x-1)^3 ). - R. J. Mathar, Sep 18 2011
From Vincenzo Librandi, Sep 27 2011: (Start)
a(n) = (18*n^2 + 7*(-1)^n - 7)/4;
a(n) = -a(n-1) + 9*n^2 - 9*n + 1. (End)
Sum_{n>=1} 1/a(n) = Pi^2/108 + tan(sqrt(7)*Pi/6)*Pi/(6*sqrt(7)). - Amiram Eldar, Jan 17 2023
MATHEMATICA
LinearRecurrence[{2, 0, -2, 1}, {0, 1, 18, 37}, 50] (* Amiram Eldar, Jan 17 2023 *)
PROG
(Magma) [(18*n^2+7*(-1)^n-7)/4: n in [0..50]]; // Vincenzo Librandi, Sep 27 2011
(PARI) a(n)=(18*n^2+7*(-1)^n-7)/4 \\ Charles R Greathouse IV, Sep 28 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Sep 17 2011
STATUS
approved