[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109043
a(n) = lcm(n,2).
20
0, 2, 2, 6, 4, 10, 6, 14, 8, 18, 10, 22, 12, 26, 14, 30, 16, 34, 18, 38, 20, 42, 22, 46, 24, 50, 26, 54, 28, 58, 30, 62, 32, 66, 34, 70, 36, 74, 38, 78, 40, 82, 42, 86, 44, 90, 46, 94, 48, 98, 50, 102, 52, 106, 54, 110, 56, 114, 58, 118, 60, 122, 62, 126, 64, 130, 66, 134
OFFSET
0,2
COMMENTS
Exponent of the dihedral group D(2n) = <x, y | x^n = y^2 = 1, yxy = x^-1>. - Arkadiusz Wesolowski, Sep 10 2013
Second column of table A210530. - Boris Putievskiy, Jan 29 2013
For n > 1, the basic period of A000166(k) (mod n) (Miska, 2016). - Amiram Eldar, Mar 03 2021
LINKS
Dorin Andrica, Sorin Rădulescu, and George Cătălin Ţurcaş, The Exponent of a Group: Properties, Computations and Applications, Disc. Math. and Applications, Springer, Cham (2020), 57-108.
Piotr Miska, Arithmetic properties of the sequence of derangements, Journal of Number Theory, Vol. 163 (2016), pp. 114-145; arXiv preprint, arXiv:1508.01987 [math.NT], 2015. See p. 124 (p. 14 in the preprint).
FORMULA
For n > 0: a(n) = A186421(n) + A186421(n+2).
a(n) = n*2 / gcd(n, 2).
a(n) = -(n*((-1)^n-3))/2. - Stephen Crowley, Feb 11 2007
From R. J. Mathar, Aug 20 2008: (Start)
a(n) = A066043(n), n > 1.
a(n) = 2*A026741(n).
G.f.: 2*x(1+x+x^2)/((1-x)^2*(1+x)^2). (End)
a(n) = n*A000034(n). - Paul Curtz, Mar 25 2011
E.g.f.: x*(2*cosh(x) + sinh(x)). - Stefano Spezia, May 09 2021
Sum_{k=1..n} a(k) ~ (3/4) * n^2. - Amiram Eldar, Nov 26 2022
MATHEMATICA
LCM[Range[0, 70], 2] (* Harvey P. Dale, Aug 19 2012 *)
PROG
(Sage) [lcm(n, 2) for n in range(0, 68)] # Zerinvary Lajos, Jun 07 2009
(Haskell)
a109043 = (lcm 2)
a109043_list = zipWith (*) [0..] a000034_list
-- Reinhard Zumkeller, Mar 31 2012
(Magma) [0, 2, 2] cat [Exponent(DihedralGroup(n)) : n in [3..65]]; // Arkadiusz Wesolowski, Sep 10 2013
(PARI) a(n)=lcm(n, 2) \\ Charles R Greathouse IV, Sep 24 2015
(Python)
def A109043(n): return n<<1 if n&1 else n # Chai Wah Wu, Aug 05 2024
CROSSREFS
Cf. A000166, A109042, A152749 (partial sums).
Cf. A066043 (essentially the same), A000034 (=a(n)/n), A026741 (=a(n)/2).
Sequence in context: A292258 A140524 A204904 * A054585 A278236 A278226
KEYWORD
nonn,easy
AUTHOR
Mitch Harris, Jun 18 2005
STATUS
approved