[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157143
A transform of the Motzkin numbers.
2
1, -1, -1, 0, 2, 1, -1, -4, -2, 5, 11, 0, -21, -24, 18, 68, 42, -100, -203, -17, 428, 521, -340, -1544, -1019, 2252, 4892, 606, -10297, -13331, 7821, 39310, 28028, -56893, -130394, -22239, 272991, 370641, -193874, -1081694, -821669, 1536026, 3707766, 798376
OFFSET
0,5
COMMENTS
Hankel transform is A157144.
FORMULA
G.f.: (1-x)/(1+x^2+x^3)*c((x/(1+x^2+x^3))^2), c(x) the g.f. of A000108. - (The formula does not match the entries, even if A000108 is replaced by A001006. R. J. Mathar, Feb 06 2015)
a(n)=sum{k=0..n, (-1)^C(n-k+1,2)*C(floor((n-k)/2),k)*A001006(k)}.
PROG
(PARI) A157143(n)=vector(n++, k, (-1)^binomial(n+1-k, 2)*binomial((n-k)\2, k-1))*Vec(serreverse(x/(1+x+x^2+O(x^n))))~ \\ M. F. Hasler, Feb 09 2015
CROSSREFS
Cf. A001006.
Sequence in context: A346032 A157125 A335941 * A112096 A217874 A323182
KEYWORD
easy,sign
AUTHOR
Paul Barry, Feb 24 2009
STATUS
approved