[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157146
Prime numbers containing equal number of odd prime digits and even prime digits.
1
23, 127, 239, 251, 263, 271, 283, 293, 521, 823, 827, 1123, 1213, 1217, 1231, 1259, 1279, 1283, 1297, 1321, 1423, 1427, 1627, 1721, 1823, 2003, 2017, 2039, 2063, 2083, 2087, 2113, 2131, 2143, 2179, 2237, 2273, 2309, 2311, 2341, 2381, 2389, 2399, 2417
OFFSET
1,1
COMMENTS
Odd prime digits are 3, 5 or 7 and even prime digit = 2.
The definition also requires that the two digit counts are both larger than zero. [R. J. Mathar, Feb 26 2009]
LINKS
MAPLE
F:= proc(d) uses combinat; local A, m, s2, s2p, s3, CP, T, i, L, v;
A:= NULL;
for m from 1 to d/2 do
for s2 in choose({$2..d}, m) do
s2p:= {$1..d} minus s2;
for s3 in choose(s2p, m) do
CP:= [seq(`if`(member(i, s2), [2], `if`(member(i, s3), [3, 5, 7], [0, 1, 4, 6, 8, 9])), i=1..d)];
T:= cartprod(CP);
while not T[finished] do
L:= T[nextvalue]();
v:= add(L[i]*10^(i-1), i=1..nops(L));
if isprime(v) then A:= A, v fi;
od
od od od;
sort([A]);
end proc:
F(4); # Robert Israel, Jan 27 2019
MATHEMATICA
opepQ[n_]:=Module[{t=DigitCount[n, 10, 2]}, t>0&&Count[IntegerDigits[ n], _?PrimeQ]==2t]; Select[Prime[Range[400]], opepQ] (* Harvey P. Dale, Jun 29 2018 *)
CROSSREFS
Sequence in context: A033211 A142518 A176822 * A232827 A217496 A141963
KEYWORD
nonn,base,less
AUTHOR
EXTENSIONS
Missing numbers inserted by R. J. Mathar, Feb 26 2009
STATUS
approved