[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A142980
a(1) = 1, a(2) = 5, a(n+2) = 5*a(n+1) + (n + 1)^2*a(n).
4
1, 5, 29, 190, 1414, 11820, 110004, 1129200, 12686256, 154896480, 2043108000, 28958014080, 438997622400, 7088892491520, 121487996448000, 2202440792832000, 42113131054848000, 847071044402688000
OFFSET
1,2
COMMENTS
This is the case m = 2 of the more general recurrence a(1) = 1, a(2) = 2*m + 1, a(n+2) = (2*m + 1)*a(n+1) + (n + 1)^2*a(n), which arises when accelerating the convergence of Mercator's series for the constant log(2). See A142979 for remarks on the general case.
LINKS
FORMULA
a(n) = n!*p(n)*Sum_{k = 1..n} (-1)^(k+1)/(k*p(k-1)*p(k)), where p(n) = 2*n^2 + 2*n + 1 = A001844(n) is the Ehrhart polynomial for the 2-dimensional cross polytope (a square).
Recurrence: a(1) = 1, a(2) = 5, a(n+2) = 5*a(n+1) + (n+1)^2*a(n).
The sequence b(n) := n!*p(n) satisfies the same recurrence with b(1) = 5, b(2) = 26.
Hence we obtain the finite continued fraction expansion a(n)/b(n) = 1/(5 + 1^2/(5 + 2^2/(5 + 3^2/(5 + ... + (n-1)^2/5)))), for n >= 2.
The behavior of a(n) for large n is given by lim_{n -> oo} a(n)/b(n) = 1/(5 + 1^2/(5 + 2^2/(5 + 3^2/(5 + ... + n^2/(5 + ...))))) = Sum_{k >= 1} (-1)^(k+1)/(k*(4*k^4 + 1)) = log(2) - (1 - 1/2); the final equality is a result of Glaisher.
Thus a(n) ~ c*n^2*n! as n -> oo, where c = 2*log(2) - 1.
MAPLE
p := n -> 2*n^2+ 2*n+1: a := n -> n!*p(n)*sum ((-1)^(k+1)/(k*p(k-1)*p(k)), k = 1..n): seq(a(n), n = 1..20)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Peter Bala, Jul 17 2008
STATUS
approved