[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A142977
Table of coefficients in the expansion of the rational function 1/{(1-x)^2 - y*(1+x)^2}.
2
1, 1, 2, 1, 6, 3, 1, 10, 19, 4, 1, 14, 51, 44, 5, 1, 18, 99, 180, 85, 6, 1, 22, 163, 476, 501, 146, 7, 1, 26, 243, 996, 1765, 1182, 231, 8, 1, 30, 339, 1804, 4645, 5418, 2471, 344, 9, 1, 34, 451, 2964, 10165, 17718, 14407, 4712, 489, 10
OFFSET
0,3
COMMENTS
The row entries are the figurate numbers of the odd dimensional cross polytopes. See A142978 for the complete table of figurate numbers of n-dimensional cross polytopes. The rows are the partial sums of the even-numbered rows of the square array of Delannoy numbers A008288.
LINKS
Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2003), 65-75.
FORMULA
T(n,k) = Sum_{j = 0..k} C(2*n, k-j)*C(2*n+j+1, j).
O.g.f.: 1/{(1 - x)^2 - y*(1 + x)^2} = Sum_{n, k >= 0} T(n,k)*x^k*y^n = 1/(1 - y) * Sum_{m >= 0} U(m, (1 + y)/(1 - y))*x^m, where U(m, y) denotes the m-th Chebyshev polynomial of the second kind.
O.g.f. row n: (1 + x)^(2*n)/(1 - x)^(2*n+2).
O.g.f. column k: 1/(1 - y)*U(k, (1 + y)/(1 - y)).
The entries in the n-th row appear in the series acceleration formula for the constant log(2): Sum_{k >= 1} (-1)^(k+1)/(T(n,k)*T(n,k+1)) = 1 + (4*n + 2)*( log(2) - (1 - 1/2 + 1/3 - ... + 1/(2*n + 1)) ).
For example, n = 1 gives log(2) = 4/6 + (1/6)*( 1/(1*6) - 1/(6*19) + 1/(19*44) - 1/(44*85) + ... ). See A142983 for further details.
EXAMPLE
The square array begins
n\k| 0...1....2.....3.....4.......5
------------------------------------
.0.| 1...2....3.....4......5......6 ... A000027
.1.| 1...6...19....44.....85....146 ... A005900
.2.| 1..10...51...180....501...1182 ... A069038
.3.| 1..14...99...476...1765...5418 ... A099193
.4.| 1..18..163...996...4645..17718 ... A099196
.5.| 1..22..243..1804..10165..46530 ... A300624
...
MAPLE
with(combinat): T:=(n, k) -> add(binomial(2n, k-j)*binomial(2n+j+1, j), j = 0..k): for n from 0 to 9 do seq(T(n, k), k = 0..9) end do;
CROSSREFS
Cf. A005900 (row 1), A008288, A069038 (row 2), A099193 (row 3), A099196 (row 4), A300624 (row 5), A142978, A142983.
Sequence in context: A201146 A065553 A016545 * A356601 A362997 A120108
KEYWORD
easy,nonn,tabl
AUTHOR
Peter Bala, Jul 15 2008
EXTENSIONS
Restored missing program. - Peter Bala, Oct 02 2008
STATUS
approved